De abstracte kunst van Nederlandse kunstschilder Piet Mondriaan (1872 - 1944) blijkt niet alleen wiskundigen te fascineren. Op een subtiele manier speelt hij immers met eenvoudige geometrische vormen (rechthoeken en vierkanten) en de primaire kleuren rood, blauw en geel in combinatie met wit, zwart en grijs. Blijkbaar paste hij ook onbewust 'de gulden snede' toe in zijn werk zoals blijkt uit de onderstaande studie.
Het labyrint op de vloer in de kathedraal van Chartres dateert van rond 1200 en het is een van de best bewaarde labyrinten in gotische kathedralen.
Wiskundige bekeken gaat het hier om een erg symmetrische vorm. De weg slingert zich door de vier kwadranten. De pelgrims legden de weg af doorheen het labyrint als een vorm van boetedoening.
Dit labyrint staat model voor het podium van Cirque du Soleil in de verbluffende show CORTEO die ik gisteren (vrijdag 22 juni 2012) met vrouwlief Ingrid kon gaan bekijken in Antwerpen.
Geniet je even mee van de trailer waarin het podiumlabyrint duidelijk in beeld komt ? Zoals je zult opmerken spelen 'cirkels' een belangrijke rol in de show.
Vorig jaar dook in de Vlaamse Wiskunde Olympiade een vraag op over het aantal wegen in een eenvoudige doolhof. Los jij ze correct op?
Electrabel heeft al heel wat problemen opgelost. Vinden ze nu ook een oplossing voor het volgende klassiek vraagstukje?
Drie huizen A, B en C moeten aangesloten worden op het gasnet (G), de waterleiding (W) en het elektriciteitsnet van Electrabel (E). Kan je vanuit G, W en E telkens drie leidingen leggen naar elk van de huizen A, B en C zonder dat die leidingen elkaar kruisen?
Dat is meteen een mooie toepassing van de grafentheorie!
OPMERKING
Er is wel een oplossing voor dit probleem als de eigenaar van huis A
toelaat
dat één van de leidingen vanuit huis C onder zijn huis door loopt.
Elke wiskundeleraar zal wel zijn eigen TOP 30 van wiskundige formules hebben.
Ongetwijfeld staat de formule van Euler bij de favorieten van veel collega's:
Hierbij is e = 2,71818 ... de basis van de natuurlijke logaritmen i = de imaginaire eenheid met i² = -1 π = 3,14159... het bekendste irrationaal getal 1 = het neutraal element voor de vermenigvuldiging 0 = het neutraal element voor de optelling.
Het bewijs steunt op de reeksontwikkelingen van Maclaurin voor ex, cos x en sin x.
Hieruit blijkt dat eiα = cos + i sin α. Vervang tenslotte in deze formule α door π en je vindt meteen de formule van Euler.
In bijlage vind je mijn persoonlijke TOP 30 van wiskundige formules.
Ken jij ze allemaal? Of heb je een andere persoonlijke favoriete formule?
S = T x G² "Succes is talent maal geduld in het kwadraat"
Geduld kan je aankweken door een aantal klassieke problemen op te lossen.
Stel dat je beschikt over een vat van 12 liter dat helemaal gevuld is met wijn. Je hebt daarnaast een lege fles die 8 liter kan bevatten en een lege fles die 5 liter kan bevatten. Hoe kan je nu die 12 liter wijn via overgieten verdelen in twee keer 6 liter?
Los nu zelf (met wat geduld!) het volgende probleem op.
Stel dat je beschikt over een vat van 10 liter dat helemaal gevuld is met wijn. Je hebt daarnaast een lege fles die 7 liter kan bevatten en een lege fles die 3 liter kan bevatten. Hoe kan je nu die 10 liter wijn via overgieten verdelen in twee keer 5 liter?
Barbara was 5 jaar geleden 5 keer zo oud als haar zusje Ann. Nu is ze slechts 3 keer zo oud als Ann. Hoe oud zijn beide zusjes nu?
Neem even de tijd om dit raadsel op te lossen en geniet ondertussen mee van de song 'Barbara Ann' van The Beach Boys. Brian Wilson, het muzikale brein achter deze succesvolle groep werd op 20 juni 1942 - precies 70 jaar geleden - in California geboren.
Happy Birthday, Brian!
Oplossing van het raadseltje. Barbara is nu 30 jaar en haar zusje Ann is 10 jaar.
Wat is er zo bijzonder aan het getal 99066? Als je dit getal op zijn kop zet, blijft het gelijk.
Maar er is nog iets verbazingwekkender aan de hand. Vermenigvuldig eens dit getal met zichzelf. Je bekomt dan een getal waarin alle cijfers precies één keer voorkomen. Zo een getal noemt men ook wel een pandigitaal getal.
Met behulp van de 7 puzzelstukjes van een tangram kan je één groot vierkant maken, maar ook twee vierkanten die allebei half zo groot zijn als het oorspronkelijke vierkant. Dit blijkt uit de onderstaande figuur.
Het lukt zelfs om drie even grote vierkanten zo te verknippen dat je met de puzzelstukjes weer één groot vierkant kunt vormen. Kijk maar:
Kan je nu zelf een methode bedenken om vier vierkanten zo te verknippen dat je met de puzzelstukjes weer één groot vierkant kunt vormen?
De oplossing staat hieronder, maar die had je natuurlijk al lang zelf gevonden!
Bestaat er een verband tussen het getal π = 3,14159265... en de rij van Fibonacci (F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5 ...)? Het antwoord op deze vraag is positief!
Steunend op deze formule vind je dan
uiteindelijk de volgende elegante 'PIBONACCI-formule'
waarbij in de noemer van de breuken enkel de getallen voorkomen die op de
oneven plaatsen staan in de rij van Fibonacci:
In de jaren '90 waren de flippo's erg populair. Deze plastieken schijfjes trof je aan in zakjes chips en bij de chips van de firma Smiths zaten er zelfs op een bepaald moment rekenflippo's.
Het was de bedoeling elk van de 4 cijfers die op een flippo stonden precies één keer te gebruiken om zo met behulp van de 4 hoofdbewerkingen ( +, - , x en :) precies 24 te bekomen.
Voor de bovenstaande flippo kan dat bijvoorbeeld op de volgende manier: 2 x 8 + 7 + 1 = 24 of (7 - 1) x 8 : 2 of (7 + 1) x 2 + 8.
We introduceren nu de 65-flippo. Het is de bedoeling met de 4 cijfers die op elke flippo staan via de 4 hoofdbewerkingen het getal 65 te vormen.
Kan je de oplossing vinden voor deze tien 65-flippo's?
Een afdrukversie met oplossingen zit in de bijlage.
Op 18 juni 1942 werd Paul McCartney in Liverpool geboren. Het feit dat Macca vandaag zijn 70-ste verjaardag viert, kan een goede reden zijn om nog eens naar zijn wereldhit 'Yesterday' (1964) te luisteren,
die hij wellicht op het toilet heeft geschreven.
"In de Londense woning van zijn vriendin Jane Asher droomde McCartney op een nacht in 1964 van een melodie. 's Ochtends, toen hij op het toilet zat, zong hij het lied voor zichzelf", zo verklaarde Tony Sheridan die nog met de Beatles heeft samengewerkt. Sheridan zegt dat het verhaal hem door Macca zelf is toevertrouwd.
Er was al geweten dat 'Yesterday' in zijn oorspronkelijk versie nog 'Scrambled Eggs' (roerei) heette. Sheridan vermoedt dat McCartney zijn toenmalige vriendin net een ontbijt had klaargemaakt en dat Macca op die manier bij zijn werktitel uitkwam. Het woord 'Yesterday' werd pas later voor de song gebruikt, omdat het gemakkelijker was om daar rijmwoorden op te vinden.
We nodigen je meteen uit om tijdens het beluisteren van 'Yesterday' een eenvoudige rekenpuzzel op te lossen.
In het onderstaande vierkant staan een aantal getallen. De opdracht bestaat er in een aantal van die getallen te omcirkelen zodat de som ervan precies 70 oplevert. Je mag dus enkel getallen uit het vierkant bij elkaar optellen en je mag hoogstens 4 getallen omcirkelen.
De Babyloniërs en de Egyptenaren merkten al op dat 24 heel veel delers heeft:1, 2, 3, 4, 6, 12 en 24. Wellicht is dit de reden dat ze een dag opdeelden in 24 uren.
Zuiver goud is goud van 24 karaat. Dat betekent dat goud van 12 karaat slechts voor 50 % uit zuiver goud bestaat.
De 24 uur van Le Mans is de oudste en grootste autorace ter wereld voor sportwagens. Deze race werd in 1923 voor het eerst gereden.
Het Griekse alfabet vormt de basis voor het alfabet in alle Westerse landen en telt 24 letters.
Neem een priemgetal p groter dan 3. Dan is p² 1 steeds deelbaar door 24. Weet je ook waarom?
In de jaren '90 waren flippo's erg populair. Er bestonden zelfs rekenflippo's waarop 4 cijfers stonden afgedrukt. Het was de bedoeling elk cijfer precies één keer te gebruiken om zo via de 4 hoofdbewerkingen (+, -, x en :) het getal 24 te vormen.
2 x 8 + 7 + 1 = 24
De som 1² + 2² + ... + n² is gelijk aan n(n + 1)(2n + 1)/6. Een klassiek bewijs via algebra hiervoor vind je in de bijlage. Neem even de tijd en bekijk het leuke bewijs van deze formule (zonder algebra!) in het onderstaande youtube-filmpje.
Het enige getal n (n > 1) waarvoor n(n + 1)(2n + 1)/6 zelf weer een kwadraat is, is het getal 24: 1² + 2² + 3² + ... + 24² = 4900 = 70².
EUCLIDES is het tijdschrift van de NVVW (Nederlandse Vereniging Van Wiskundeleraren).
Het is gebruikelijk om eens in de zoveel tijd een aflevering van het tijdschrift Euclides te wijden aan een speciaal onderwerp. Zo zijn er 'nummers' verschenen over Kansrekening, over Bottema, over Kunst en wiskunde, over Onderzoeksvaardigheden. Dit keer verscheen een uitdagend boek over getallen.
In zes hoofdstukken worden vele aspecten van getallen aan de orde gesteld: een pleidooi voor getallentheorie naast getaltheorie; soms moet er flink gestudeerd worden; puzzelliefhebbers komen ook aan hun trekken; vermoedens en zaken rond getallen die nog onaf zijn passeren de revue; er wordt gekeken naar getallen met een bijzondere toepassing en last but not least: de special besluit met een schat aan onderwijsgerelateerde artikelen over getallen.
Zelf had ik het geluk hiertoe een bijdrage te mogen leveren over puzzels met getallen. Het onderstaande vraagstukje is dan ook bedoeld als smaakmaker.
Een moeder is 21 jaar ouder dan haar dochter. Over 6 jaar zal die moeder 5 keer zo oud zijn als haar dochter. Waar bevindt zich de vader momenteel?
Oplossing. Noem x de leeftijd van de dochter en y de leeftijd van de moeder. Dan is y = x + 21 en y + 6 = 5(x + 6) met als oplossing x = -3/4. Dit is 9 maanden voor de geboorte. De vader bevindt zich dus heel dicht bij de moeder ...
De
inwoners van onze gemeente Kuurne (West-Vlaanderen, België) worden ezels
genoemd.
Een
spotnaam die de inwoners van de naburige stad Kortrijk hen smalend gaven,
toen de Kuurnenaren vroeger voor dag en dauw met ezel en kar,
beladen met groenten, naar de ochtendmarkt te Kortrijk trokken.
En dan is er ook nog een legende die
verklaart hoe de Kuurnenaren aan hun spotnaam zijn gekomen.
Lang geleden, op aswoensdag moest de priester naar een begrafenis.
Hij liet zich in de aswoensdagviering vervangen door de koster.
Die kon de Latijnse woorden "Memento, homo, quia pulvis es, et in pulverem
reverteris"
("Gedenk o mens, dat gij stof en as zijt en tot stof en as zult
wederkeren"), niet onthouden.
Uiteindelijk zei de priester tot de domme koster: "Ge zijt ezel
geboren, ezel zult ge sterven".
"Ha," zei de koster, "dat zal ik wel onthouden!" en met
deze woorden gaf hij de Kuurnenaren hun askruisje.
Toch durft een Kuurnenaar je uitdagen om twee 'ezelsproblemen' op te lossen.
PROBLEEM 1
Twee ezels sjouwen een aantal zakken. Zegt de eerste ezel tot de tweede: "Als je mij een zak geeft, hebben wij er evenveel". Waarop de tweede ezel antwoordt: "Als jij me een zak geeft, dan heb ik er dubbel zo veel als jij". Hoeveel zakken draagt elke ezel?
PROBLEEM 2
Twee ezels sjouwen een aantal zakken. Zegt de eerste ezel tot de tweede: "Als je mij drie zakken geeft, hebben wij er evenveel". Waarop de tweede ezel antwoordt: "Als jij me drie zakken geeft, dan heb ik er drie keer zo veel als jij". Hoeveel zakken draagt elke ezel?
In de
vlakke meetkunde is een meetkundige plaats de verzameling van punten die aan
een welbepaalde eigenschap voldoen.
De meetkundige plaats van alle punten
van het vlak die op een afstand r van een gegeven punt O liggen, is de cirkel
met middelpunt O en straal r.
De meetkundige plaats van alle punten van het vlak die even ver liggen van de
punten A en B is de middelloodlijn van het lijnstuk [AB].
Een 'beroemde' meetkundige plaats wordt de heks van Agnesi genoemd.
Ze is genoemd naar de Italiaanse wiskundige Maria Gaetana Agnesi, die ze in
1748 bestudeerde.
Al in 1718 bestudeerde een zekere Guido Grandi deze kromme en gaf ze de naam versoria
(Latijn voor 'touw om een zeil op te trekken').
In het Italiaans werd dit la versiera, maar John Colson, een professor
uit Cambridge
las dit verkeerdelijk als l' aviersiera en dat betekent de heks.
Zo kwam deze kromme aan haar merkwaardige naam.
Hoe ontstaat nu deze meetkundige plaats?
Vertrek
van een cirkel met middellijn [OM]. Kies een willekeurig punt A op deze cirkel.
Teken in M de loodlijn op OM. De halfrechte [OA snijdt deze loodlijn in N.
Teken in N de loodlijn op MN en in A de loodlijn op OM.
Deze twee loodlijnen snijden elkaar in het punt P.
Wanneer A de cirkel doorloopt, beschrijft het punt P de heks van Agnesi.
Met O(0, 0) en M(0, 2a) en θ de hoek tussen [OA en [OM heeft deze kromme als
parametervergelijkingen:
x = 2a tan θ en y = 2a cos² θ
en de cartesiaanse vergelijking wordt dan (zie bijlage):
Dag Eline, Nele, Alexandra, Jantien, Martijn en Phebe. Dag Elise, Emma, Mathias, Nils, Gilles en Julie. Dag Saar, Amber, Victor, Lize, Rustam en Dries. Dag Liselotte, Natacha, Suzanne, Nha Tuc, Fien en Louis.
Om het het probleemoplossend denken op een goede manier aan te leren en te stimuleren biedt het computerprogramma GeoGebra heel wat mogelijkheden. Uiteraard kan men niet van iedere leerling evenveel creativiteit verwachten en is kan niet iedereen eenzelfde hoog niveau van deskundigheid bereiken op het vlak van denk- en redeneervaardigheid. Het onderstaande schema geeft een duidelijk beeld van de verschillende niveaus die kunnen bereikt worden.
Het is een uitdaging voor elke leraar om op zo een manier les te geven dat elke leerling voldoende succesbeleving kent, maar ook voldoende uitdagingen krijgt op een aangepast niveau.
Digitale didactiek heeft niet alleen een serieuze impact op de manier van les geven maar impliceert ook dat de leerling (en de leraar) 'aangepaste' kennis, vaardigheden en attitudes verwerft. Daarom ontwikkelde Andrew
Churches een nieuwe, digitale versie van de bovenstaande taxonomie die rekening houdt met de
mogelijkheden en vereisten van de nieuwe informatie- en
communicatietechnologieën . Voor elk van de kennis- en vaardigheidsniveaus
(onthouden > begrijpen > toepassen > analyseren > evalueren > creëren) gaat hij na welk soort (digitale) activiteiten eraan te pas komen (zie bijlage).
Op school kan men proberen een ICT-leerlijn met GeoGebra op te bouwen over de leerjaren heen. In bijlage vind je een document dat hiervoor inspiratie kan bieden. Vanaf de tweede graad kan men systematisch bouwen aan het onderzoekend leren wat kan resulteren in leren onderzoeken (mathematiseren, onderzoekscompetenties).
Een tweede bijlage bevat een aantal problemen die men via de OVUR-methode samen met de leerlingen kan aanpakken.