Blad-steen-schaar is een spel voor twee spelers. Beide spelers steken tegelijk en op een afgesproken moment een vlakke hand (blad papier) een gebalde vuist (steen) of twee gespreide vingers (schaar) uit.
BLAD wint van STEEN (de steen wordt verpakt in papier) STEEN wint van SCHAAR (de schaar wordt bot op een steen) SCHAAR wint van BLAD (de schaar knipt door het papier).
Wanneer beide spelers tegelijk dezelfde keuze maken, scoren ze allebei een punt.
Het spel wordt een oneven aantal keer (vooraf af te spreken) gespeeld. Wie de meeste punten scoort, wint het spel.
Een regelmatig veelvlak is een ruimtelijke figuur waarvan alle zijvlakken regelmatige veelhoeken zijn en waarbij in elk hoekpunt even veel ribben samenkomen. Men noemt ze ook 'de Platonische lichamen'
In de onderstaande tabel staat wat concrete informatie over hoe elk regelmatig veelvlak er uit ziet en je vindt er ook een formule voor de oppervlakte en de inhoud.
Naam
Tetraëder
Hexaëder
Octaëder
Dodecaëder
Icosaëder
zijvlakken
4
6
8
12
20
ribben
6
12
12
30
30
hoekpunten
4
8
6
20
12
{aantal ribben per zijvlak, aantal zijvlakken in elk hoekpunt}
Waarom zijn er maar 5 regelmatige veelvlakken mogelijk? Dit wisten de Oude Grieken al!
Verklaring.
De som van de hoeken van de regelmatige veelhoeken die in elk hoekpunt
samenkomen, moet kleiner zijn dan 360°
(anders zou je de bouwplaat niet kunnen vouwen).
In elk hoekpunt komen ook minstens drie zijvlakken samen (anders zou je geen
ruimtelijke figuur hebben).
Nu weten de dat
- elk van de hoeken van een gelijkzijdige driehoek 60° is. Er kunnen dus
3, 4 of 5 gelijkzijdige driehoeken in een hoekpunt samen komen;
- elk van de hoeken van een vierkant 90° is. Er kunnen dus enkel 3 vierkanten
in een hoekpunt samenkomen;
- elk van de hoeken van een regelmatige vijfhoek 108° is. Er kunnen dus enkel 3
regelmatige vijfhoeken in een hoekpunt samenkomen;
- elk van de hoeken van een regelmatige zeshoek 120° is. Er zouden dus enkel 2
van die zeshoeken in een hoekpunt kunnen samenkomen.
Een analoge redenering geldt
voor alle andere regelmatige n-hoeken (n > 6).
Tenslotte schotelen we je nog een leuke oefening voor. Als je de middens van de 6 zijvlakken van een kubus verbindt, bekom je een regelmatig achtvlak dat in die kubus zit. Kan je de verhouding van de oppervlakten en van de inhouden van beide figuren berekenen?