evodisku2
Dit blog is een onderdeel van EVODISKU
WAT IS DE BEDOELING EN WAAR STAAT DIT BLOG VOOR ****Wie meent dat alles inmiddels wel over de evolutietheorie gezegd is en dat de discussie gesloten kan worden, ziet over het hoofd dat de wetenschap niet stil staat. ***Wie meent dat inmiddels het creationisme definitief het pleit heeft verloren en dat de discussie gesloten kan worden , ziet over het hoofd dat het "creationisme" is geevolueerd ( en zal evolueren ) in nieuwere mimicrytische vormen( meme-complexen ) zoals bijvoorbeeld het ID(C) ***Dit blog is speciaal opgezet om de aktualiteit binnen het evolutie-creationisme debat te volgen en van kommentaren te voorzien ... waartoe de lezers zijn uitgenodigd bij te dragen ... Let echter wél op het volgende : "Je bent een rund als je hier met religie stunt " ....
09-10-2009
Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Wie oren heeft , die hore
Zoogdieren en middenoor 
Er is weer een zoogdier gevonden uit het reptielen tijdperk
Het  fossiel is afkomstig van de beroemde vindplaatsen  in  de 
Yixian formaties
  in het NO van China ...

Maotherium  asiaticus /2009




Een zoogdiertje  uit het krijt  : Het grond -eekhoorn-grote  Maotherium is   een nachtdiertje .
Het leefde ongeveer  - 123MY
Dit landdiertje  scharrelde  wat op de grond rond  . 
Het skelet woog ongeveer 70-80 gram en was ong 15 cm lang
Maotherium is een   algemeen model  voor  grond-bewonende  zoogdieren . Omdat het  verwant is aan de gemeenschappelijke voorouder  van buidel en placentale zoogdieren , toont het skelet , en de  tand en gebitsstructuren , de voorouderlijke toestand 
waaruit zowel placentalen als buideldieren  zijn  geevolueerd  .... . (Credit: Mark A. Klingler/Carnegie Museum of Natural History)
http://nl.wikipedia.org/wiki/Maotherium
http://home.arcor.de/ktdykes/symmetro.htm#maotherium
http://www.sciencedaily.com/releases/2009/10/091008143001.htm
http://www.sciencecodex.com/chinese_and_american_paleontologists_discover_a_new_mesozoic_mammal

Chinese en Amerikaanse paleontologen publiceerden in het wetenschappelijke tijdschrift Science een artikel over een fossiele  insecteneter.
De ouderdom van het zoogdier wordt geschat op 123 miljoen jaar, midden in het Mesozoïcum, het tijdperk van de dinosauriers

„Wat ons het meest interesseerde , is het oor van deze insecteneter”,
zei onderzoeker dr. Zhe–Xi Luo, van het Carnegie Museum of Natural History.
„Zoogdieren hebben een veel gevoeliger gehoor dan andere gewervelde dieren.”

 


MIDDENOOR
 

Zoogdieren hebben een veel beter ontwikkeld gehoor dan alle andere gewervelde dieren, en mede daardoor konden de zoogdieren een leefwijze ontwikkelen die sterk op dat goede gehoor berust.

Evolutiebiologen veronderstellen dat de ontwikkeling van een complexe  en efficient gehoor  een overlevingsvoordeel  bood
; detectie van prooien en praedatoren werd vergemakkelijkt en  de communicatie ( dus ook het vinden van een geschikte partner ) verbeterd 

Dankzij de gevoelige middenoorstructuur hoort een zoogdier zowel hoge als lage tonen.
Het  zoogdier-middenoor,  bestaat uit drie botjes (stijgbeugel, hamer en aambeeld) en een benige ring voor de trommelholte.

Juist daarom hebben paleontologen en evolutionaire biologen al langer dan een eeuw naarstig gespeurd naar aanwijzingen die zouden kunnen leiden tot inzicht in de evolutionaire ontwikkeling van het oor.

Deze botjes ontwikkelden zich evolutionair uit het kaakscharnier  bij  aan de zoogdieren  verwante reptielen 
(# Clifford A. Cuffey (Tsjok45) <--klik -
 http://en.wikipedia.org/wiki/Evolution_of_mammalian_auditory_ossicles  )

Blog Entry REPTIEL ZOOGDIER




Hoe de
 aantoonbare/waargenomen   anatomisch    tusenstappen  in de middenoorstructuur  van fossiele  "primitieve "  zoogdieren   in elkaar zaten    , bleef  tot en met de ontdekking van Yanacodon  onduidelijk....

De in 2007 ontdekte  Yanocodon liet voor het eerst zo'n   tussenliggende stap zien.
Daar is nu de maotherium asiaticus bij gekomen 






Vergelijking tussen het oor en de kaak van Yanocodon & Maotherium  met die van verwanten

All modern mammals (platypus, opossum and human) have a middle ear separated from the lower jaw (see example from living opossum). This jaw-ear separation is an important evolutionary innovation. It becomes possible for mammals to have a delicate and highly sensitive ear structure for better hearing, and to have a more robust lower jaw and jaw hinge for better feeding. Also, the jaw and ear are not interfering with each other. By comparison, the middle ear bones are a part of the lower jaw and form the jaw hinge in pre-mammalian relatives (see the example of Morganucodon).

The ear bones in Maotherium are partly separated from the jaw, and more similar to those in modern mammals than to mammaliaforms, but still retain the pre-mammalian condition in which the jaw and the ear are connected to each other. Moreover, the connected jaw-ear structure of Maotherium is similar to the ear structure of modern mammals at embryonic and fetal growth stages. This phenomenon is known as “paedomorphosis” (“paedo:” child-like; “morphosis:” similarity) and is caused by timing change in growth. The analysis of the new fossil suggests that the evolutionary pattern of the mammalian ear is directly related to timing changes in growth, as well as in changes in genes for mammalian development.

(Photo Credit: Zhe-Xi Luo/Carnegie Museum of Natural History)




 

Maotherium is related to such modern mammals as Didelphis. But unlike marsupials and placentals, in which the middle ear is separated from the mandible, in Maotherium the middle ear is still attached to the mandible. Recent developmental biology studies have shown that the connection of middle ear to the mandible can “re-appear” as the genes control their development can change, and such genetic and developmental changes can impact evolution. Maotherium provides a strong case of how development has impacted fossil evolution in the deep history of Earth. Credit: Zhe-Xi Luo/Carnegie Museum of Natural History


De middenoorbotjes van Maotherium asiaticus zijn voor het grootste deel gelijk aan die van hedendaagse zoogdieren. Volgens de onderzoekers heeft het dier daarnaast een ongebruikelijke verbinding tussen de onderkaak en het middenoor, het ‘verbeende Meckel’s kraakbeen’. Deze structuur komt voor bij zoogdierembryo’s en in het middenoor van uitgestorven zoogdieren.



[nature06277-f3.2.jpg] 




Yanocodon  / 2007 
http://www.sciencedaily.com/releases/2007/03/070314195448.htm

Fossiel zoogdier met unieke eigenschappen toont evolutie van middenoor
Auteur: prof. dr. A.J. (Tom) van Loon

 

De vondst van een  zoogdier in 2007 , dat 125 miljoen jaar geleden leefde in wat nu de Chinese provincie Hebei is, toonde voor het eerst   hoe het middenoor - een van de meest kenmerkende verschijnselen van de moderne zoogdieren - zich evolutionair ontwikkelde.

Het dier, dat Yanocodon allini is genoemd, werd ongeveer 300 km van Beijing gevonden in de Yixian-Formatie; het is het eerste fossiele zoogdier dat in de provincie Hebei is gevonden. Het dier, dat 15 cm lang was en waarschijnlijk ongeveer 30 gram woog, had tanden die kenmerkend zijn voor dieren die insecten en wormen eten. Met zijn lange lichaam en korte poten met klauwen was hij goed toegerust om te graven of onder de grond te leven.


Het holotype van Yanocodon allini, aangetroffen op een
splijtvlak waardoor het fossiel in beide stukken kan worden bestudeerd.

Bij onderzoek bleek dat het middenoor van Yanocodon het midden houdt tussen dat van de moderne zoogdieren en dat van de naaste verwanten; het biedt volgens de onderzoekers een zeldzame mogelijkheid om de ontwikkeling van het zoogdieroor te onderzoeken. Dat is niet alleen interessant omdat daarmee een van de specifieke evolutionaire aanpassingen van zoogdieren kan worden onderzocht, maar ook omdat daaruit blijkt hoe een complexe structuur geleidelijk door evolutie ontstaat (en niet door ‘intelligent design’ zoals de creationisten beweren(= een IC ontwerp ).


Vindplaats van Yanocodon




Reconstructie van het skelet (door Mark A. Klingler, CMNH)

Daarnaast vertoont Yanocodon nog enkele unieke eigenschappen. Zo had hij verbazend veel wervels: 26 in zijn borst en heup, terwijl de meeste uitgestorven zoogdieren er slechts 19 of 20 hadden. Mede aan dat grote aantal wervels dankt hij zijn langgerekte vorm. Een andere zeldzame eigenschap is dat hij ook ribben ter hoogte van zijn middel had. Met al deze kenmerken lijkt Yanocodon soms dichter bij de Marsupialia (buideldieren) te staan dan bij de Placentalia (zoogdieren die bij zwangerschap een placenta ontwikkelen), soms juist andersom.


Reconstructie van Yanocodon allini (door Mark A. Klingler, CMNH).

Referenties:
  • Luo, Z.-X., Chen, P., Li, G. & Chen, M., 2007. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, p. 288-293.

Foto’s (© Carnegie Museum of Natural History, Pittsburgh) welwillend ter beschikking gesteld door Zhe-Xi Luo, Carnegie Museum of Natural History, Pittsburgh, PA (Verenigde Staten van Amerika).

http://www.geo.uu.nl/ngv/geonieuws/geonieuwsnr.php?nummer=135#798







* Hieronder  heb ik,  integraal  een  encyclopedisch  artikel geplaatst  van de univ. van California 
 http://beta.revealedsingularity.net/article.php?art=mammal_ear

Het artikel  toont  de  fossiele  "overgangen " aan die hebben geleid tot de uiteindelijke ontwikkeling van het huidige midden-oor-apparaat   bij zoogdieren   




Evolutie van het zoogdieren-middenoor  

De evolutie van het zoogdieren middenoor is een uniek gebeuren binnen de tetrapoden . De drie  gehoorbeentjes van het  zoogdieren middenoor, zijn in feite een  Synapomorfie / Synapomorphy /


  • Het is een veel  gemaakte misvatting  dat de  transities , die uiteindelijk uitkwamen bij de "middenoorbeentjes van zoogdieren, "niet zou  zijn  voldoende  gedocumenteerd 
    en wél omdat de "middenoor"- beentjes eigenlijk veel te klein en te bros zijn om te worden  bewaard en/of te worden achterhaald in het fossielen bestand  ...zodat er dus geen feitelijk  materieel bewijs( fossiele evidenties )  is voor deze transities




      

    Click for larger image.
    Figure 1. Cladogram with representative organisms showing the changes in relative position of the quadrate, articular, squamosal and dentary in the synapsid line. The outgroup used here is a tuatara (Sphenodon, Rhynchocephalia), which has a less heavily modified skull.Click for larger image.

    Mammalian and non-mammalian jaws. In the mammal configuration, the quadrate and articular bones are much smaller and form part of the middle ear. Note that in mammals the lower jaw consists of only the dentary bone.
    (wikipedia )



    All non-synapsid

    1.- *Lineage of tetrapods containing mammals
    2.- *"Lizard-faces", including crocodiles, turtles, birds, and lizards

    Amniotes have a jaw joint that has an articulation between the Quadrate bone and   the articular bone( at the rear end of the lower jaw.) 
    While many   sauropsids have heavily modified their skulls[1], this two-bone articulation point is still readily observable1[2].
    However, it can be seen that through a rather gradual process the point of articulation in synapsids grew to accommodate a two-joint articulation which finally became the middle-ear / jaw system in extant mammals.
    This, in turn, could grant them higher auditory sensitivity than is found in all other tetrapods, which only have the stapes[3]
    and lack the mammalian incus and malleus. 


    Looking at Figure 1, it can be seen that early synapsids, sauropsids, and thus the common ancestor of both employed an articulation point comprised of the quadrate and articular bones. However, even in early specimens such as Procynosuchus, the quadrate and articular are both strongly reduced

Click for larger image.Click for larger image.

Figure 2. Varanid and snake skulls.
Note the articulation between the articular and quadrate in the varanid, and the compound and quadrate in the snake. Modified with permission.


with respect to extant sauropsids. By the arrival of Probainognathus, the synapsid jaw articulation had been highly modified. Many of the various other jaw elements seen in Procynosuchus had fused into the dentary bone, and the articular and quadrate had been further reduced. For this animal, all four bones were articulating with each other, reducing the reliance on any individual bone (or pair of bones) for the articulation, allowing further modification of the jaw joint. There are other animals, such as Diarthrognathus, for which this articulation is even more evident2.

   Upon the arrival of animals such as Morganucodon, the quadrate and articular were barely involved in the articulation, to the point where they become nearly invisible for diagrammatic purposes. This condition is then easily modified into the solely dentary-squamosal articulation present in mammals[4], represented in Figure 1 by a possum.

Click for larger image.Click for larger image.
Figure 3. Diagram of the middle ear from Gray's Anatomy.
Image taken from the public domain.


In modern mammals, the articular and quadrate reside in the middle ear, connected to the stapes in series and have lost their connection to the jaw, which is composed in mammals of only the dentary bone. This modification to the jaw makes it more robust, but the tradeoff is that mammals have less flexibility in their jaw movements and can never move their jaws in the way that a snake or monitor lizard might.

   Simple presence of a change is insufficient, however, and the selective pressures for causing such a change are important to recognize. In dicynodonts, therocephalians, and cynodonts vibrations from the air passed primarily through the  mandible,

  • Lower jaw. Just the dentary in mammals, but the collection of bones comprising the lower jaw in all other animals

to the quadrate, to the stapes.

  • The "stirrup" in humans

By loosening the bones

posterior

  • Toward the back of the animal

to the dentary, they became more free to vibrate and thus could transmit higher frequencies3. Once these became connected with the stapes[5], they permitted not only the hearing of higher frequencies but of lower amplitudes, as well, acting as an amplification system. The resulting excellent hearing fits with fossil finds that suggest Mesozoic mammals were primarily burrowing, climbing, and/or insect eating4. A plausible and generally the most well-accepted explanation for this series of adaptations being selectivly advantageous is that it permitted these Mesozoic premammalian ancestors to better hear insects and other small prey, most particularly during the night. This works with the fossil evidence and other hypotheses about

endothermy,

  • A more rigorous term for "warm-bloodedness"

molar shapes, and generally unremarkable mammalian color vision to conclude mammal ancestry is rooted in nocturnal insectivorous niches, because most other terrestrial niches were occupied by dinosaurs[6].

Philip Kahn
University of California, Berkeley
Submitted August 17, 2008

  • [1] Particularly among varanids and snakes due to cranial kinesis
  • [2] In snakes, the lower jaw bones have been fused into the dentary and the "compound bone" which includes the articular
  • [3] Known as the "stirrup" in humans
  • [4] Needless to say, the precise transformation of the ancestral jaw joint to the mammalian middle ear is more complicated than presented, and more detail can be found in the cited article by Luo (2007)
  • [5] In the ear, these bones are known as the incus and malleus, respectivley
  • [6] While there may be dinosaurs that were nocturnal and/or insectivorous, they were probably less of a direct threat to the Mesozoic synapsids
  1. Pough et. al. 2004. Herpetology. ISBN 0-13-100849-8
  2. Kitzmiller v. Dover trial testimony
  3. Allin 1975. Evolution of the mammalian middle ear. Journal of Morphology.
  4. Luo 2007. Transformation and diversification in early mammal evolution. Nature.




zie ook  -->
http://whyevolutionistrue.wordpress.com/2009/10/15/your-ear-bones-came-from-your-jaws/

De andere kleine  zoogdieren  uit  het dino-tijdperk 

Castorocauda lutrasimilis  /2006
http://www.sciencedaily.com/releases/02/060224195600.htm
Onderzoek in China  heeft in 2006 een bijzonder fossiel opgeleverd.
Het gaat om de 164 miljoen jaar oude restanten van een primitief zoogdier uit de Jiulongshan Formatie in Binnen-Mongolië.
Uit een reconstructie blijkt dat dit waarschijnlijk het oudst bekende zwemmende zoogdier moet zijn geweest.

Het dier behoort tot de docodonten, een inmiddels uitgestorven groep van zoogdieren die – voor zover bekend – leefden van het Midden-Jura tot het Laat-Krijt, en die niet direct verwant zijn aan de moderne zoogdieren.



 

De artistieke weergave (links) van Castorocauda lutrasimilis (Mark A. Klinger, CMNH)
op basis van o.a. het gevonden skelet (rechts)



Holotype of Castorocauda lutrasimilis [Jinzhou Museum of Paleontology (JZMP) 04-117]. (A) Photograph of the holotype. (B) Osteological structures and preserved soft-tissue features. Abbreviations: as, astragalus; ca, caudal vertebrae; cn, ento-, meso-, and ecto-cuneiforms; co, coronoid process of dentary; cp, carpals; cs, calcaneus; ec, ectepicondyle and supinator shelf (humerus); ef, entepicondyle foramen; ep?, probable epipubis; is, ischium; J, jugal; L1-6, lumbar ribs 1 to 6; m, molars; mb, manubrium of malleus; mp, metacarpals; mx, maxilla; px, premaxilla; ra, radius; rc, radial condyle; S1-2, sacrals 1 and 2; sp, extratarsal ("poisonous") spur; t4-t14 (preserved ribs through thoracic 17); uc, ulnar condyle; ul, ulna.

Het fossiel /
http://scienceblogs.com/pharyngula/2006/02/jurassic_beaver.php

Het goed bewaarde fossiel is Castorocauda lutrasimilis genoemd (çastoro is het Latijnse woord voor bever; cauda het Latijnse woord voor staart, lutra het Latijnse woord voor rivierotter, en similis is het Latijnse woord voor gelijkend).
Het gaat dus om een dier dat lijkt op een rivierotter, met een beverstaart.
De restanten tonen aan dat het skelet en de zachte weefsels het dier goede zwemeigenschappen gaven, en de tanden tonen aan dat het om een viseter ging.
Het dier moet een dichtbehaarde pels hebben gehad, waarmee het het oudste zoogdier is waarvan vaststaat dat hij een haardos had. Hij had een dichte, korte ondervacht, die zijn huid beschermde tegen direct contact met water, met daaroverheen een langere vacht.

De levenswijze moet volgens de onderzoekers geleken hebben op die van een vogelbekdier. De meest waarschijnlijk leefomgeving was langs rivieren of meren. Daar peddelde hij rond, min of meer zoals honden dat nu doen, at waterdieren en insecten, en groef gangen om in de bodem een nest te bouwen. De beverachtige staart moet geholpen hebben bij de voortbeweging in het water, net zoals bij bevers. Daarop wijzen ook de botten in zijn staart, waarvan de bouw grote gelijkenis vertoont met die van recente bevers en otters.

Vindplaats van het fossiel.

De meeste Mesozoïsche zoogdieren waren klein (met een gewicht van minder dan 50 g), en ze waren terrestrisch (op het land levend). Vrijwel allemaal voedden ze zich met insecten. Castorocauda is met zijn lengte (zonder staart) van ten minste 42,5 cm (waarvan de schedel 6 cm uitmaakte), een geschat gewicht van 500-800 g en een dieet van waterdieren daarop een duidelijke uitzondering.


mammaliform_phylo.jpg

Referenties:

Martin, Th., 2006. Early mammalian evolutionary experiments. Science 311, p. 1109-1110.
Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A.R., 2006. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, p. 1123-1126.

Foto’s welwillend ter beschikking gesteld door Zhe-Xi Luo, Carnegie Museum of Natural History (CMNH), Pittsburg, PA (Verenigde Staten van Amerika).

http://www.kennislink.nl/publicaties/het-eerste-zwemmende-zoogdier
http://nl.wikipedia.org/wiki/Castorocauda

http://en.wikipedia.org/wiki/Castorocauda


OUDSTE  bekende (placentale ) ZOOGDIER   /2002




Het  eerste  in China  ontdekte  "oudste "zoogdier van de groep,  is een kleine, op een huismuis lijkende diersoort met de naam Eomaia scansoria (vrij vertaald: oude moeder).
Het eerder goed bewaard gebleven fossiel van dit diertje werd gevonden in China.
Vindplaats is de beroemde Yixian formatie waar ook overblijfselen van gevederde dinosauriërs werden gevonden.

Het bijzondere van deze vondst is de goede staat waarin het (bijna complete) fossiel verkeert. Het fossiel is zo goed bewaard gebleven dankzij het vulkanische materiaal waarmee het werd bedekt.
Botten van handen en voeten en een vacht waarin ten minste twee verschillende haartypen voorkomen kunnen worden onderscheiden.

Eomaia scansoria gevonden in sedimenten van de Yixian formaties in China. (bron: Carnegie Museum of Natural History)

Eerder gevonden resten van prehistorische zoogdieren bestonden slechts uit stukjes gebit.
De onderzoekers hebben daarom een goed beeld van de manier waarop het diertje geleefd moet hebben.
De vorm van de poten, afmetingen van de ledematen en lange vingers en tenen wijzen op een behendige klimmer.

Het ongeveer 16 cm lange diertje heeft meer overeenkomsten met de huidige placentale zoogdieren (inwendige dragers) dan met de buideldieren.
Het oudste tot nu gevonden fossiel van een placentaal zoogdier had een ouderdom van 110 miljoen jaar.
Deze vondst lijkt er nu op te wijzen dat de het oudste placentale zoogdieren  minstens 125 miljoen jaar oud is.
De splitsing tussen buideldieren en placentale zoogdieren heeft dus voor het ontstaan van Eomaia plaatsgevonden.

Alhoewel Eomaia waarschijnlijk niet de directe voorouder van alle(huidige )  zoogdieren is kan deze soort worden gezien als een  zeer verre oom of tante van de mens.

Illustration of Eomaia scansoria fossil



Eomaia scansoria
(Chinese Academy of Geological Sciences (CAGS) 01-IG-1a, b; holotype).
a, Fur  halo preserved around the skeleton (01-IG-1a, many structures not represented on this slab are  preserved on the  counter-part 01-IG-1b, not illustrated). b, Identification of major skeletal structures of  Eomaia. c, Reconstruction of Eomaia as an agile animal, capable of climbing on uneven substrates and  branch walking.  Taken from ref
(1)


http://www.evolutionpages.com/Eomaia%20scansoria.htm

http://www.kennislink.nl/publicaties/oudste-zoogdier
http://nl.wikipedia.org/wiki/Eomaia
http://www.carnegiemnh.com/vp/media/JiEtAl(Eomaia-Nature).pdf --> zie bijlage I

  • Nationalgeographic: Eomaia
  • Nature: Eomaia
  • NPR: Eomaia
  • Carnegie Museum of Natural History



    FRUITAFOSSOR / 1998

    http://nl.wikipedia.org/wiki/Fruitafossor
    http://en.wikipedia.org/wiki/Fruitafossor#To_what_is_it_related.3F

     

    150 miljoen jaar geleden werd de kunst van het termieten-eten voor het eerst uitgevonden.

    Fruitafossor windscheffelia heet het beestje dat Zhe-Xi Luo en John Wible deze week in Science beschrijven. Het diertje ter grootte van een eekhoorn struinde rond op aarde toen de dino’s het hier voor het zeggen hadden, zo'n 150 miljoen jaar geleden aan het van het tijdperk Jura.

    Het bijzondere aan Fruitafossor is dat zowel zijn tanden als zijn pootjes lijken op die van hedendaagse termieteneters, zoals miereneters, aardvarkens en het gordeldier. Zo zijn de tanden van Fruitafossor hol, en bevatten ze geen laagje loeihard email. Kauwen kan je er niet mee, maar termieten met kop en staart wegslikken gaat uitstekend. Zo doen aardvarken, gordeldier en miereneter het immers ook, met een listige beweging van de tong.

    Met zijn voorpootjes groef het dier waarschijnlijk termietenheuvels af, net zoals de hedendaagse insekteneters. Opmerkelijk is dat die laatste geen verwanten zijn van Fruitafossor – ze ontstonden pas 100 miljoen jaar later. Termieteneters zijn dus zeker twee keer in de evolutie opgedoken, een verschijnsel wat biologen ‘convergente evolutie’ noemen.


    Oudste placentalia ?
     

    2007    / Wible vond  een nieuw zoogdierfossiel dat een placenta had.


    Vergelijking van de schedels van Maelestes gobiensis (links)  =
     
    De schedel die Wible en zijn collega's gebruikten in hun berekeningen
    en Parascalops breweri, een nu in Amerika voorkomende mol (rechts).

    de papierclip is van het  kleinere soort
      
    2,5 cm


    De schedel van Maelestes gobiensis (zijaanzicht) /
    Een schets van de schedel.

    Hij besloot ermee een grote berekening te maken, waarin hij andere fossielen en levende dieren meenam.
    De methode van Wible gaat als volgt.
    Hij deelde alle uiterlijke kenmerken, zoals hoektanden, in heel erg gedetailleerde categorieën in.
    De uiterlijke verschillen tussen dieren van nu zijn groter dan tussen de fossielen.
    Wible rekende terug naar het punt waar het verschil ophield.
    En voilà, het eerste placentale zoogdier. Deze anonieme voorouder zou 65 miljoen jaar geleden hebben rondgestruind.
    Dat rijmt aardig met de oudst gevonden verwant:  het fossiel van  een konijnachtig dier dat 63 miljoen jaar terug met moederkoek rondhuppelde
    Maar of er geen oudere zijn ?

    Nieuw fossiel wijst op ontstaan van zoogdieren met placenta omstreeks K/T-grens

    836

     

    De zoogdieren bestonden, zoals tal van fossiele vondsten uitwijzen, al in het Mesozoïcum. Binnen de groep van de zoogdieren behoren de meeste soorten (5080 van de huidige 5416 bekende soorten) tot de Placentalia (zoogdieren waarvan het vrouwtje de foetus voedt via een placenta); daarnaast bestaan er nog buideldieren (Marsupialia) en enkele eierleggende zoogdieren (Monotremata).

    Over het ontstaan van de Placentalia bestaat onenigheid. Volgens paleobiochemici zou die groep al voor de K/T-grens zijn ontstaan, volgens DNA-onderzoek 129-78 miljoen jaar geleden.

    Opvallend genoeg zijn er echter nooit Mesozoïsche zoogdieren gevonden waarvan duidelijk was dat het Placentalia waren (maar zulke vondsten zijn er wel uit het begin van het Tertiair), dus veel paleontologen denken dat de groep omstreeks 65 miljoen jaar geleden moet zijn ontstaan.



    De schedel van Maelestes gobiensis (onderaanzicht)


     


    De vondst in Mongolië van een goed bewaard zoogdier lijkt het pleit in het voordeel van de paleontologen te beslechten. Het opvallende is dat deze conclusie niet eens direct voortkomt uit de vondst zelf, maar een gevolg is van onderzoek dat is uitgevoerd naar aanleiding van de vondst.

    De onderzoekers wilden van het fossiel, dat werd gevonden in de 75-71 miljoen jaar oude Djadokhta-Formatie (en dat dus van 10 miljoen jaar   voor de K/T-grens stamt), namelijk zijn juiste plaats geven binnen de zoogdieren.

    Daarom deden ze een uitgebreid onderzoek naar de specifieke kenmerken van 69 taxa van de drie hoofdgroepen van uitgestorven en nog levende zoogdieren. Daarbij ging het om niet minder dan 409 anatomische karakteristieken. Bovendien onderzochten ze alle zoogdierrestanten van enige betekenis die bekend zijn uit het Krijt.

     Het nieuw gevonden zoogdier zou behoren tot een tak die was afgesplitst van de omstreeks 125 miljoen jaar geleden ontstane Eutheria. Het zou nog niet tot de Placentalia hebben behoord, want die zouden pas kort na de K/T-grens zijn ontstaan.

    Volgens deze zienswijze, die op veel overtuigende gegevens is gestoeld maar die ongetwijfeld veel kritiek zal krijgen omdat eerdere stambomen behoorlijk worden veranderd, is het oudst bekende zoogdier dat tot de Placentalia gerekend mag worden een konijnachtig dier uit Azië van ongeveer 63 miljoen jaar oud.


    De plaats van Maelestes binnen de zoogdieren; het gele gebied bestrijkt de Placentalia

    Simplified eutherian part of the strict consensus of three most parsimonious trees (2,296 steps; see Supplementary Information). Broken line, K/T boundary at 65 million years. Filled circle taxa, Laurasian (northern continents); open circle taxa, Gondwanan (southern continents). Circles and circles with thicker black lines indicate temporal occurrence of studied specimens. The grey box delimits Placentalia, the oldest member of which is the early Palaeocene Mimotona. Placentalia originates at or near the K/T boundary in Laurasia. Deccanolestes from the latest Cretaceous of India is nested among Asian clades and is more parsimoniously interpreted as an independent southern migration. The animal silhouette spotlights Maelestes.



    Dat alles naar aanleiding van de vondst van een incomplete schedel, wat wervels, een paar incomplete ribben en nog wat botten.

    De schedel vertoont enige gelijkenis met die van een recente mol, Parascalops breweri, maar had meer ruimte voor zijn tanden. Het dier was klein (de schedel is ongeveer 2,5 cm lang), zoals overigens vrijwel alle vroege zoogdieren. De onderzoekers hebben het dier Maelestes gobiensis gedoopt.

    Referenties:
    • Cifelli, R.L. & Gordon, C.L., 2007. Re-crowning mammals. Nature 447, p. 918-920.
    • Wible, J.R., Rougier, G.W., Novacek, M.J. & Asher, R.J., 2007. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 44, p. 1003-1006.

    Foto's: Carnegie Museum of Natural History, Pittsburgh, PA (Verenigde Staten van Amerika).


    FIGURE 1. Maelestes gobiensis gen. et sp. nov. (holotype, PSS-MAE 607) skull and mandible in comparison to other Djadokhta eutherians.

    From the following article:

    Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary

    J. R. Wible, G. W. Rougier, M. J. Novacek & R. J. Asher  Nature 447, 1003-1006(21 June 2007)  doi:10.1038/nature05854

     

    Left panel: reconstructions of Maelestes, Asioryctes and Zalambdalestes, the last two of which are redrawn from ref. 15. Right panel: incomplete Maelestes skull in left lateral (top) and ventral (bottom) views, and left Maelestes mandible in lateral view (middle). The large opening in the palate between the palatines and maxillae is a palatal vacuity. Maelestes probably had some upper incisors, but only a small non-tooth-bearing fragment of the premaxilla is preserved. Scale bars, 5 mm.

     

    Uppers are shown in labial (a) and occlusal (b) views; lowers are shown in occlusal (c) and labial (d) views.

  • Blog Entry ZOOGDIEREN I



    Geef hier uw reactie door
    Uw naam *
    Uw e-mail *
    URL
    Titel *
    Reactie * Very Happy Smile Sad Surprised Shocked Confused Cool Laughing Mad Razz Embarassed Crying or Very sad Evil or Very Mad Twisted Evil Rolling Eyes Wink Exclamation Question Idea Arrow
      Persoonlijke gegevens onthouden?
    (* = verplicht!)
    Reacties op bericht (1)

    10-10-2009
    Clifford A. Cuffey

    The Fossil Record: Evolution or "Scientific Creation"

    Clifford A. Cuffey


     

    Mammal-Like Reptiles

    As previously stated, a succession of transitional fossils exists that link reptiles (Class Reptilia) and mammals (Class Mammalia). These particular reptiles are classifie as Subclass Synapsida. Presently, this is the best example of th e transformation of one major higher taxon into another. The morphologic changes that took place are well documented by fossils, beginning with animals essentially 100% reptilian and resulting in animals essentially 100% mammalian. Therefore, I have chosen this as the example to summarize in more detail (Table 1, Fig. 1).

    [Fig. 1a]
    [Fig. 1b]

    Skulls and jaws of synapsid reptiles and mammals; left column side view of skull; center column top view of skull; right column side view of lower jaw. Hylonomus modified from Carroll (1964, Figs. 2,6; 1968, Figs. 10-2, 10-5; note that Hylonomus is a protorothyrod, not a synapsid). Archaeothyris modified from Reisz (1972, Fig. 2). Haptodus modified from Currie (1977, Figs, 1a, 1b; 1979, Figs. 5a, 5b). Sphenacodo n modified from Romer & Price (1940, Fig. 4f), Allin (1975, p. 3, Fig. 16);note: Dimetrodon substituted for top view; modified from Romer & Price, 1940, pl. 10. Biarmosuchus modified from Ivakhnenko et al. (1997, pl. 65, Figs. 1a, 1B, 2); Alin & Hopson (1992; Fig. 28.4c); Sigogneau & Tchudinov (1972, Figs. 1, 15). Eoarctops modified from Broom (1932, Fig. 35a); Boonstra (1969, Fig. 18). Pristerognathus modified from Broom (1932, Figs 17a, b,c); Boonstra (1963, Fig. 5d). Procynosuchus modified from Allin & Hopson (1992, Fig. 28.4e); Hopson (1987, Fig. 5c); Brink (1963, Fig. 10a); Kemp (1979, Fig. 1); Allin (1975, p. 3, Fig. 14). Thrinaxodon modified from Allin & Hopson (1992, Fig. 28.4f);Parrington (1946, Fig. 1); Allin (1975, p. 3, Fig. 13). Probainognathus modified from Allin & Hopson (1992, Fig. 28.4g); Romer (1970, Fig. 1); Allin (1975, p. 3, Fig. 12). Morga nucodon modified from Kermack, Mussett, & Rigney (1981, Figs. 95, 99a; 1973, Fig. 7a); Allin (1975, p. 3, Fig. 11). Asioryctes modified from Carroll (1988, Fig. 20-3b). Abbreviations: ag = angular; ar = articular; cp = coronoid process; d = dentary; f = lateral temporal fenestra; j = jugal; mm = attachment site for mammalian jaw muscles; o = eye socket; po = post orbital; q = quadrate; rl = reflected lamina; sq = squamosal; ty = tympanic.

    TAXONOMY
    LATERAL TEMPORAL FENESTRA
    LOWER JAW DENTARY
    TEETH
    LOWER JAW: POST- DENTARY BONES
    MIDDLE EAR & JAW ARTICULATION
    M: Early Placental mammals
    Asioryctes
    Upper Cretaceous
    Merged with eye socket; cheek arch bowed out laterally 100% of jaw length is the den- tary; condylar process in contact with squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement No post-dentary bones 3 middle ear bones (stapes, incus, malleus) + tympanic; squamosal-dentary jaw joint
    L: "Pantothere" mammals
    Amphitherium
    Middle/Upper Jurassic
    X 100% of jaw length is the den-  tary; condylar process contacts squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement Post-dentary bones migrated to middle ear Probably 3 middle ear bones (stapes, incus, malleus) + tympanic; squamosal-dentary jaw joint
    K: Morganucodontid mammals
    Morganucodon  Upper Triassic & Lower Jurassic
    Merged with eye socket; cheeck arch bowed out laterally 100% of jaw length is the den- tary; condylar process expanded posteriorly to make contact with squamosal Fully differentiated teeth; incisors, canines, premolars; one tooth replacement 20% of jaw length; reflected lamina decreased to narrow ribbon-like horseshoe Stapes extends from inner ear capsule to quadrate; quadrate tiny; both quadrate-articular and squamosal-dentary jaw joints
    J: Chiniquodontid cynodonts
    Probainognathus
    Middle Triassic
    Much larger than eye socket; 40- 45% of skull length; expanded posterioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 95% of jaw length is the dentary; large coronoid process expanded posteriorly; condylar process expanded posteriorly Large single canine; cheek teeth multicusped; tooth replacement reduced 20% of jaw length; angular notch widened ventrally; width of main part of angular decreased; reflec - ted lamina decreased to narrow ribbon-like horseshoe Stapes extends from inner ear capsule to quadrate; quadrate tiny; quadrate-articular joint
    I:Galesaurid cynodonts
    Thrinaxodon
    Lower Triassic
    Much larger than eye socket; 40% of skull length; expanded pos- terioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 85% of jaw length is the dentary; large coronoid process expanded to top of eye socket and pos- teriorly; jaw muscles attached to most of coronoid process Large single canine; cheek teeth multicusped; tooth replacement reduced 25% of jaw length; angular notch widened ventrally; width of reflec- ted lamina decreased; width of main part of angular decreased Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
    H: Procynosuchid cynodonts
    Procynosuchus
    upper Upper Permian
    Much larger than eye socket; 40% of skull length; expanded pos- terioirly, medially, & laterally; midline of skull narrow sagittal crest; chek arch bowed out laterally 75-80% of jaw length is the den- tary; coronoid process expanded to near top of eye socket and posteriorly; jaw muscles  attached to dorsal part of coronoid process Large single canine; cheek teeth multicusped 30% of jaw length; angular notch widened ventrally; width of reflected lamina decreased Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
    G: Early Therocephalians
    Pristerognathus
    lower Upper Permian
    Larger than eye socket; expanded posteriorly and medially; 30% of skull length 75-80% of jaw length is the den- tary; posterior end of dentary expanded posteriorly and dorsally into narrow blade-like coronoid process; rises to middle of eye socket Large single canine; other teeth simple cones. 35% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate; quadrate small; quadrate-articular jaw joint
    F: Early Gorgonopsians
    Eoarctops
    lower Upper Permian
    Slightly larger than eye socket; expanded posteriorly and medially (minimal); 20-25% of skull length 65-75% of jaw length is the den- tary; posterior end of dentary slightly expanded posteriorly and dorsally as incipient coronoid process Large single canine; other teeth simple cones. 40% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
    E: Eotitanosuchians
    Sphenacodon
    Lower Permian
    Small; slightly smaller than eye socket; slightly expanded posteriorly and medially 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Large single canine; other teeth simple cones. 40% of jaw length; angular notch deepened into a cleft; reflected lamina large, broad, blade-like Stapes extends from inner ear capsule to quadrate;  quadrate- articular jaw joint 
    D: Late sphenacodonts
    Sphenacodon
    Upper Pennsylvanian
    Small; smaller than eye socket; confined to one side of skull 65% of jaw length is the dentary; posterodorsal edge rises broadly but slightly above the tooth row Enlarged incipient canines; other teeth simple cones 60% of jaw length; venntral edge of angular notched ("angular notch") offsetting a short pro- tusion (reflected lamina) Stapes extends from inner ear capsule to quadrate; quadrate large and plate-like; quadrate- articular jaw joint
    C: Early spenacodonts
    Haptodus
    Upper Pennsylvanian
    Tiny; smaller than eye socket; confined to one side of skull 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Undifferentiated; slightly enlarged incipient canines just behind nares 70% of jaw length; ventral edge of angular with shallow indentation Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
    B: Early ophiacodonts
    Archaothyris
    upper Middle Pennsylvanian
    Tiny; smaller than eye socket; confined to one side of skull x Undifferentiated; slightly enlarged incipient canines just behind nares x Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint
    A: Protorothyrids
    Hylonomus
    lower Middle Pennsylvanian
    Absent 65-75% of jaw length is the den- tary; posterodorsal edge rises broadly but slightly above tooth row Undifferentiated; slightly enlarged incipient canines just behind nares 70% of jaw length; ventral edge of angular continuous  Stapes extends from inner ear capsule to quadrate; quadrate- articular jaw joint

    Table 1: Morphology of synapsid reptiles and mammals (Note that Hylonomus is a protothyrid, not a synapsid). Data from references cited in text.

    Modern reptiles and mammals are very distinctive, easily diagnosable, and do not intergrade. Reptiles are covered by scales, mammals by hair; reptiles are cold-blooded, mammals warm-blooded; reptiles do not suckle their young, mammals have mammary glands; reptiles have sprawling posture, mammals have upright posture. Most of these features are soft part anatomy or physiology that very rarely fossilize (although dinosaur skin impressions are known from Cretaceous sediments, and imprints of mammal hair are known from Eocene bats from Germany; Franzen, 1990). In the fossil record, we must look to skeletal features.

    There are many skeletal features which allow us to distinguish the reptiles from the mammals (Carroll, 1988; Table 1, rows A, M). The single most important defining characteristic is the nature of the articulation of the lower jaw to the skull (Simpson, 1959). In reptiles, multiple bones comprise the lower jaw. A small bone at the posterior end of the lower jaw, the articular, articulates with the quadrate bone of the skull (Simpson, 1959; Carroll, 1988). In mammals, one large bone, the dentary, comprises the lower jaw. It articulates with the squamosal bone of the skull (Simpson, 1959; Carroll, 1988).

    From comparative anatomy studies, it is certain that most of the bones of the reptiles and mammals are homologous (Crompton & Parker, 1978; Carroll, 1988). Of greatest importance, the middle ear bones of mammals (stapes, incus, malleus, and tympanic) are homologous with several of the skull and jaw bones of reptiles (stapes, quadrate, articular, and angular, respectively; Romer, 1956, p. 33-38, 1970a; Allin, 1975, 1986; Allin & Hopson, 1992; Crompton & Parker, 1978; Hopso n, 1987, 1994; Carroll, 1988). One group of reptiles, the synapsids (Subclass Synapsida), share with the mammals an additional homologous structure: the lateral temporal fenestra, which is an opening in the skull behind the eye socket at the triple junction between the squamosal, jugal , and post orbital bones (Broom, 1932; Frazetta, 1968; Kemp, 1982; Carroll, 1988). A band of bone composed of the jugal and the squamosal is adjacent to the lateral temporal fenestra (Broom, 1932; Kemp, 1982; Carroll, 1988). This is the cheek arch so characteristic of mammal skulls (Broom, 1932; Kemp, 1982; Carroll, 1988). Therefore, synapsids are commonly named the mammal-like reptiles.

    The presence of diagnosable morphologic differences between reptiles (including the oldest reptiles and the oldest synapsids) and mammals distinguishes them as distinct taxa. This allows us to test evolution by looking for transitional forms between the two. Because many of the bones are homologous, we should find evidence illustrating how these bones were modified over time to become the new bones. Furthermore, these morphologic changes should happen in parallel and in geochronologic succession.

    Synapsid reptiles inhabited Pangea from the Middle Pennsylvanian through the Early Jurassic (Kemp, 1982, 1985; Sloan, 1983; Carroll, 1988; Hopson, 1969, 1987, 1994; Hopson & Crompton, 1969; Hotton, et al., 1986; Crompton & Jenkins, 1973; Sidor & Hopson, 1998; Romer & Price, 1940; Broom, 1932; Boonstra, 1963, 1969, 1971; Tchudinov, 1983; Olson, 1944; Tatarinov, 1974; Vyushkov, 1955; Efremov, 1954). From the Early Permian through the Early Triassic, they were the largest and most abundant land animals (Sloan, 1983; Colbert, 1965). Though much less well known to the general public than dinosaurs, one of the cereal box dinosaurs, Dimetrodon (the sail-backed reptile), is a synapsid, not a dinosaur (Romer & Price, 1940; Carroll, 1988). The oldest mammals are Late Triassic (Kemp, 1982; Carroll, 1988). Below is a discussion of the geochronologic succession linking synapsids and mammals. The oldest reptiles (named protorothyrids; Carroll, 1964, 1988, p. 192-199) are from the lower Middle Pennsylvanian, and the oldest synapsids (Reisz, 1972) are from the upper Middle Pennsylvanian, both of Nova Scotia. Upper Pennsylvanian and Lower Permian forms are known primarily from the midcontinent and Permian Basin region of the United States (Romer & Price, 1940; Currie, 1977, 1979; Kemp, 1982; Sloan, 1983). The basal Upper Permian forms are known from Russia (Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Ivakhnenko et al., 1997). Most of the Upper Permian and Lower Triassic succession is known from southern Africa, especially the Great Karoo of South Africa (Broom, 1932; Boonstra, 1963, 1969, 1971; Hopson & Kitching, 1972; Kemp, 1982; Sloan, 1983). The Middle Triassic forms are from South America (Romer, 1969a, 1969b, 1970b, 1973; Romer & Lewis, 1973; Bonaparte & Barbarena, 1975), and the Upper Triassic and Lower Jurassic mammals are known from Eurasia (Kermack, Mussett, & Rigney, 1973, 1981; Kemp, 1982). Subsequent Mesozoic mammals are known from all over the world (Simpson, 1928; Lillegraven et al., 1979).

    When placed in proper geochronologic succession, the synapsids naturally form a succession of taxa (genera and families) that progressively become more mammal-like and less reptile-like (Kemp, 1982, 1985; Sloan, 1983; Sidor & Hopson, 1998; Hopson, 1987, 1994). Morphologic changes, summarized in Table 1 and Figure 1, affect the entire skeletal anatomy of these animals, but are most clearly displayed in their skulls.

    The lateral temporal fenestra increased in size from a tiny opening smaller than the eye socket to a giant opening occupying nearly half the length of the skull. Ultimately, it merged with the eye socket, thus producing the full development of the cheek arch so characteristic of mammals (Broom, 1932; Frazetta, 1968; Kemp, 1982; Sloan, 1983; Hopson, 1987, 1994; Carroll, 1988).

    Successively, the relative proportion of the lower jaw comprised of the dentary bone (teeth-bearing bone) gradually increased until the entire lower jaw consisted of the dentary (Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1987, 1994). In Pennsylvanian and Lower and basal Upper Permian synapsids, the postero-dorsal edge of the lower jaw rose broadly but only slightly above the level of the tooth row (Romer & Price, 1940; Currie, 1977, 1979; Ivakhnenko et al., 1997; Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Hopson, 1987, 1994). In succeeding forms, the posterior part of the dentary expanded dorsally and posteriorly as a blade-like process, and progressively became larger (Broom, 1932; Boonstra, 1963, 1969, 1971; Sigogneau, 1970; Brink, 1963; Kemp, 1979; Hopson, 1987, 1994), forming the coronoid process (Parrington, 1946; Fourie, 1974; Romer, 1969b, 1970b, 1973; Hopson, 1987, 1994) to which the mammalian-type jaw musculature is attached (Barghusen, 1968; Bramble, 1978; Crompton, 1972; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). Concomitantly, the post-dentary bones progressively reduced in size (Allin, 1975; Crompton, 1972; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1987, 1994).

    Beginning with the Upper Pennsylvanian sphenacodonts, a notch developed in the angular bone that offsets a projection, the reflected lamina (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Romer & Price, 1940; Currie, 1977, 1979; Kemp, 1982; Sloan, 1983; Carroll, 1988). The reflected lamina first became a large blade-like flange (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Ivakhnenko et al., 1997; Tchudinov, 1960, 1983; Efremov, 1954; Olson, 1962; Sigogneau & Tchudinov, 1972; Broom, 1932; Sigogneau, 1970; Boonstra, 1963, 1969, 1971), and then was progressively reduced to a delicate horseshoe-shaped bone (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Brink, 1963; Parrington, 1946; Fourie, 1974; Romer, 1969b, 1970b, 1973; Kermack, Mussett, & Rigney, 1973, 1981; Kemp, 1979, 1982; Sloan, 1983; Carroll, 1988).

    Simultaneously, the quadrate progressively decreased in size (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988). The articular did not decrease in size much, being small initially, but developed a downward-pointing prong (Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988). In the synapsids, the lower jaw was hinged to the skull by the articular and quadrate bones (Crompton, 1972; Crompton & Parker, 1978; Allin, 1975; Allin & Hopson, 1992; Hopson, 1987, 1994). Thus they are classified as reptiles (Simpson, 1959; Kemp, 1982; Sloan, 1983; Carroll, 1988). As the quadrate and articular became smaller, they were relieved of their solid suture to the dentary and skull (Crompton, 1972; Allin, 1975, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). A projection of the dentary extended posteriorly and made contact with the squamosal. Morganucodon possessed the mammalian dentary-squamosal jaw joint adjacent to the reptilian articular-quadrate jaw joint (Kermack, Mussett, & Rigney, 1973, 1981; Carroll, 1988). It is classified as the first mammal, but it is a perfect intermediate. Now that a new jaw joint was established, the quadrate and articular were subsequently relieved of that function (Crompton, 1972; Allin, 1975, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Crompton & Parker, 1978; Kemp, 1982; Sloan, 1983; Carroll, 1988). Ultimately, in Middle and Upper Jurassic mammals, the tiny quadrate, articular, and ring-like angular migrated as a unit to the middle ear where they joined the stapes and became the incus, malleus, and tympanic bones (Allin, 197 5, 1986; Allin & Hopson, 1992; Hopson, 1987, 1994; Kemp, 1982; Sloan, 1983; Carroll, 1988).

    Progressively, the teeth became differentiated. The large canines developed first, followed by the development of multicusped cheek teeth, reduced tooth replacement (Osborn & Crompton, 1973; Crompton & Parker, 1978), and finally full y differentiated incisors, canines, premolars, and molars with one tooth replacement during life (Kemp, 1982; Hopson, 1994).

    Many other morphologic changes are documented in the fossil record. These demonstrate the morphologic and geochronologic succession from sprawling limb posture to upright limb posture of mammals (Jenkins, 1971; Romer & Lewis, 197 3; Kemp, 1982; Carroll, 1988; Hopson, 1994). As Jenkins (1971, p. 210) stated, In details of morphology and function, the cynodont post-cranial skeleton should be regarded as neither reptilian nor mammalian but as transitional between the two classes . Other changes have been adequately summarized elsewhere (Kemp, 1982; Sloan, 1983; Carroll, 1988; Hopson, 1994). Obviously, fundamental physiologic changes must have taken place as well, many of which are not directly preserved in the fossil record, though some can be inferred from the skeletal anatomy (Findlay, 1968; Kemp, 1982; Sloan, 1983, Carroll, 1988; Hopson, 1994).

    This is well documented in the fossil record by a massive volume of incontrovertible data that cannot be explained away. Such large-scale, progressive, continuous, gradual, and geochronologically successive morphologic change (Sidor & Hopson, 1998) is descent with modification, and provides compelling evidence for evolution on a grand scale.

    http://www.gcssepm.org/special/cuffey_05.htm

    10-10-2009 om 22:53 geschreven door Tsjok45




    Tsjok45
    http://nl.wikipedia.org/wiki/Gebruiker:Tsjok45
    Klik op de afbeelding om de link te volgen

     
    Belgische Soortenlijst
    Archief per maand
  • 04-2014
  • 02-2014
  • 11-2012
  • 10-2012
  • 09-2012
  • 08-2012
  • 03-2012
  • 12-2011
  • 10-2011
  • 09-2011
  • 08-2011
  • 07-2011
  • 04-2011
  • 03-2011
  • 02-2011
  • 01-2011
  • 12-2010
  • 11-2010
  • 09-2010
  • 08-2010
  • 07-2010
  • 06-2010
  • 05-2010
  • 04-2010
  • 03-2010
  • 02-2010
  • 01-2010
  • 12-2009
  • 11-2009
  • 10-2009
  • 09-2009
  • 08-2009
  • 07-2009
  • 06-2009
  • 05-2009
  • 04-2009
  • 03-2009
  • 02-2009
  • 01-2009
  • 11-2008
  • 10-2008
  • 09-2008
  • 08-2008
  • 07-2008
  • 06-2008
  • 05-2008
  • 04-2008
  • 03-2008
  • 02-2008
  • 01-2008
  • 12-2007
  • 11-2007
  • 10-2007
  • 09-2007
  • 08-2007
  • 07-2007
  • 06-2007
  • 05-2007
  • 09-2005
    Mijn favorieten
  • evolutie-creationisme
  • Pandasthumb
  • 'tGroot Skeptisch Discussieforum
  • Evolutieblog /Gert Korthof
  • Thomas Agricola / Tomasso's tien tellen
  • Pharyngula
  • Sandwalk
    Foto
    Gastenboek
  • buy cialis canada paypal
  • now cialis active cheap super
  • Gould en Darwinisme.be op één lijn?
  • blog
  • foutje

    Druk oponderstaande knop om een berichtje achter te laten in mijn gastenboek

    Laatste commentaren
  • Segera daftarkan diri anda untuk mengikuti Judi Online melalui kami sebagai agen judi online yang terbaik dan terpercaya (violaputri)
        op Aanbeveling EUROPEES ONDERWIJS
  • Agen Bola Terbaik untuk menjadi media perjudian anda adalah kami (halimsutarmaja)
        op Aanbeveling EUROPEES ONDERWIJS
  • gelasaqua (gelasaqua)
        op ZWEDEN
  • poker online (amanda1)
        op Aanbeveling EUROPEES ONDERWIJS
  • pandora jewelry (changhon62)
        op EUROPEES ONDERWIJS ?
  • Inhoud blog
  • intelligente dieren
  • acanthodii
  • video mammoet
  • EVODISKU INHOUD E
  • BREIN EN EVO
  • evodisku C Cosmos
  • anticreato
  • DINOSAURICON B
  • DINOSAURICON D
  • EVODISKU B



    Evolutie en creationisme in de Nederlandstalige  media
    http://evolutie-creationisme-media.blogspot.com/2009_12_13_archive.html


    14-02-2009
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Een belangrijke Nieuwkomer
    HET PROJECT  van
    JOHAN BRAECKMAN 

    UGent

    http://www.evolutietheorie.be/



    (klik  op  het vierkantje )-->
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.
    NADARWIN  
     
     
    De komplete aanklikbare "NaDarwin" is hier te vinden
    http://evodisku.multiply.com/journal/item/655/NaDarwin


    Quick site:


    OPGELET
    Het duurt een tijdje vooraleer de aangeklikte grote bestanden zijn gedownload

    Hardnekkige Misverstanden
    http://web.archive.org/web/20070128091855/www.nadarwin.nl/misverstanden.htm
    Hardnekkige Misverstanden

    (makkelijk) Darwins evolutietheorie
    http://web.archive.org/web/20070521224108/www.nadarwin.nl/evolutie-theorie.htm

    Sporen van Evolutie
    http://web.archive.org/web/20070519001006/www.nadarwin.nl/S/sporen.html

    Genetica
    http://web.archive.org/web/20070224174120/www.nadarwin.nl/Gtica/genetica.html

    Het Fossielenbestand
    http://web.archive.org/web/20070519000907/www.nadarwin.nl/FB/fossielenbestand.html

    Geologie & de ouderdom v/d aarde
    http://web.archive.org/web/20070519000822/www.nadarwin.nl/Geo/geologie.html

    Embryologie
    http://web.archive.org/web/20070522060922/www.nadarwin.nl/E/embryologie.html

    Creationistische fouten & blunders
    http://web.archive.org/web/20070128093013/www.nadarwin.nl/CFB/creationisme.html

    Is creationisme wetenschap?
    http://web.archive.org/web/20070519000954/www.nadarwin.nl/crea-wetenschap.html

    Boekbesprekingen
    http://web.archive.org/web/20070515114244/www.nadarwin.nl/boekbesprekingen.html

    Artikelen van Arjan Kop
    http://web.archive.org/web/20070519000939/www.nadarwin.nl/Art-AK/arjan.html

    De niet-zo-missing links gallerij
    http://web.archive.org/web/20070128091722/www.nadarwin.nl/gallerij.html

    Reacties op de site
    http://web.archive.org/web/20070521224240/www.nadarwin.nl/reacties.html

    Links
    http://web.archive.org/web/20070519000654/www.nadarwin.nl/links.html

    Zoeken--> pico search /NIET MEER BRUIKBAAR

       
    ( inhoudsopgave  met aanklikbare  links  van de  site  NaDarwin )




    INHOUD  PER CATEGORIE
      

    Algemeen

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.LEES EERST DIT   ( creationisme)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.WAT IS DE BEDOELING EN WAAR STAAT DIT BLOG VOOR (algemeen )


    Ecologie en natuurbehoud

    kevermania

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Orang oetan
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.UITSTERVINGSGOLF   primaten  in moeilijkheden
     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.WELK EEN SCHOONHEID SCHEPT DE MENS TOCH ?  oliecatastrofe



    Publiek debat  

    DARWINJAAR
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Verslaggevers, pop-wetenschap, hypes  en creationisten 
    * Tree of life
  • Vervalsing of geklooi ?
  • Levend arsenicum


    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.2009: Dominees verklaren Darwin de oorlog 
    creationisten carnaval  

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.creationisten weggevertjes 
     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Misvattingen en leugens 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.150jaar Darwinisme... De evolutietheorie gewikt en gewogen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DANTE'S HEL versie 2009 door de Klojo's

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Na het Darwinjaar

    HET GELIJK VAN DARWIN

    Musea
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. Koninklijk Belgisch Instituut voor Natuurwetenschappen KBIN

    I(Categorie  ; CREATIONISME )

    a)controverse /Publiek dispuut/politiek
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Creationistische tsjeven-truken ?» Reageer (7) 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Aanbeveling EUROPEES ONDERWIJS  » Reageer (6)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.EUROPEES ONDERWIJS ? » Reageer (10)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.EUROPEES ONDERWIJS II   » Reageer (4)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Het Grote Publieke Dispuut
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Kom op zeg  /EO rel » Reageer (3)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. Sir Attenborough's antwoord  » Reageer (1)

    Misvattingen

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Wetenschappelijke parate Kennis neemt af bij jongeren ?  » Reageer (6)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.ZWEDEN  » Reageer (1)


    b) ID
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. Is ID de wetenschappelijke (sic) uitleg voor creationiisten
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.150jaar Darwinisme... De evolutietheorie gewikt en gewogen 
     
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.David sorensen en revolutietheorie lalala
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DE VERRIJZENIS VAN DE JONGE VERDRONKEN KOE » Reageer (21)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.ID TOVERDOOS OVER   SLECHTE  ID-EETJES  ,RESISTENTIE  &  TOVERDOCTORS

    c) OEC
    d) YEC
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.het Grote vertaalde en gerecycleerde Citatenboek 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.MOROSOFEN ?
    morosoof of oplichter (Tsjok45)
        op MOROSOFEN ?
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.POLONAISE met creationisten

    II( Categorie  WETENSCHAP )
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.
    eerste acht maanden van 2008

    Primaten
     
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Fossiele apen in 2010
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Darwinius masillae
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.GANLEA megacanina  
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Orang oetan

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. Nog een aap uit de mouw
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.
    Saadanius hijazensis
    LIBYA
    a)antropologie

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Ardipithecus Ramidus
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Australopithecus SEDIBA
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.STERKFONTEIN 2010

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Een oeroud spoor
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Denisova :  ZUID SIBERIË
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DENISOVA - mens

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DMANISI AAP OF MENS
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DE OUDSTE ? » Reageer (1)  Nakalipithecus nakayamai (<)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Alweer eentje ? .....
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De tand des tijds  / Heidelberg-mens 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DE HEUPEN VAN EVA
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.CASABLANCA MAN /erectus
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Hobbit is aparte soort ?  » Reageer (2)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.NOG EEN BENDE BIJTERS 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.POLONAISE met neanderthaler
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. TANDEN UIT DE QESEM GROT
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Neanderthaler genoom
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Mitochondriale Genenkaart van Neanderthaler
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Xuchang mens 

    b)Biologie 
    1.-(
    EVOLUTIE )
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.NAS / IM Document 2008 (2)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.NAS / IM Document 2008 ( 1) 

    Cambrium & precambrium  
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.AVALON
     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.GABONESE chips


    Evolutie in actie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Opmerkelijk snelle adaptaties bij kroatische ruine-hagedissen:

    2.-fysiologie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.VERTEBRATEN- OOG en Müller cellen

    c)Paleontologie /

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De zogenaamde levende fossielen

  • Pterosaurier
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Pterosaurier


    1a.-Dino's;


    DINO 2010
    DINO-maand ?
    De Bultenaar uit spanje

    Dino's ontdekt in 2009
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Hier komen de nieuwste dino's
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DAKOTA & LEONARDO
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Dino collageen ?
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Megadino

    Saurichia
    Theropoda

    Dromeosauridae
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Mongolie  :  Linheraptor esquisitus

    Opnieuw iets over Theropode dino's
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Vroeg grut
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Dino's onstonden in zuidamerika ...
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Voorouder dino's ? Asilisaurus kongwe

    geboortegrond dinosaurus


    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Aerosteon riocoloradensis
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.BEIPIAOSAURUS

    Ornithomimosauria
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Beishanlong grandis,

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Polonaise 1  OPA THEROPODA ?
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.oudste theropode ?

    Tyrannosauridae

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.En nog eentje uit de tyrannosaurus familie;Bistahieversor sealeyi
    ( scroll naar  2 ) Haplocheirus Sollers   
     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.tyrannosaurus in australie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Zacht dinosaurus weefsel betwist
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Dino collageen ?
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Polonaise 2
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Polonaise 3 BREEKBAAR BOSKALF
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.RAPTOREX kriegsteini
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Schrikaanjagende hagedissen

    1b.-Vogelevolutie ;


    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Anchiornis huxleyi in vol ornaat

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Archaeopteryx en co

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Pluimpje        

    Pluimpje

     

     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.EEN PLUIM VOOR CHINA
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Geef eens een pootje
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Pluimgewicht  
    KLEIN DUIMPJE & DE REUS &VEREN
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Opnieuw gevederde Maniraptor
     Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. Similicaudipteryx.
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Aerosteon riocoloradensis


    Krokodillen
     
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.PAKASUCHUS KAPILIMAI
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Prestosuchus chiniquensis
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Terug naar zee
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.viseter

    Zeereptielen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Predator X  
    KLEIN DUIMPJE & DE REUS &VEREN
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.HET SVALBARD MONSTER

    Schikdpadden
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Schildpadsoep

    Slangen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Slangetje in het gras ? I
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Een ouder slangetje in het gras

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.krokodil als prooi ; titanoboa
     

    Zoogdieren
     
    Buideldieren
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.NAMBAROO

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Een oor voor evolutie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. PLACENTALE ZOOGDIEREN STAMBOOM CONTROVERSE
     
  • Een uitgekomen voorspelling
  • Wie oren heeft , die hore
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Eritherium azzouzorum
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.LJOEBA
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Darwinius masillae
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.VLIEGENDE KATTEN   ?
    Vleermuizen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.ALWEER EEN BELANGRIJK STUK UIT DE LEGPUZZEL
    Zee-zoogdieren ;
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Van de wal in de visgronden  Indohyus / walvisevolutie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Zeehonden-evolutie

    amfibieen 


    Vissen
    Overgang  naar tetrapoda

     
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Opnieuw Tiktaalik
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Ventastega

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.KIEKEBOE BOE BOE (oude tetrapoden )
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De niet-zo-missing links gallerij (1) 

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.KWASTEN
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.KWASTEN (2)

    Longvissen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. HELP TE WEINIG ZUURSTOF


    Arthropoda
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.trilobieten

    Weekdieren
    OCTOPUSSY


    d) Geologie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.ALH 84001
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.CHICXULUB
    TIPS

    *Blauwe
    en groene ( =nederlandse)teksten zijn meestal  aanklikbare links 
    *Engelse Wikipedia teksten  verwijzen   in de  linkerkolom naar  verschillende  niet-engelse versies van het   wikiartikel
    *Blauwe teksten tusssen ""  ,  zijn voornamelijk  ( gedeeltelijke)citaten afkomstig van  mensen met andere  meningen


      







    Links naar  Gespecialiseerde  Verenigingen en sites


    Fossielnet
    http://www.fossiel.net/

    Arachnologie  
    ARABEL

    http://www.arabel.ugent.be/

    Myrmycologie
    Mierenwerkgroep * Polyergus *
    http://formicidae.be/

    Entomologie
    Jean-Luc Renneson
    http://users.swing.be/entomologie/
    http://users.swing.be/entomologie/Vespidae%20of%20the%20World1.htm


    Three of life  projects 



     "The Tree of Life".
     
     
  • Tree of Life Web Project
  • Green Tree of Life at Berkeley
  • Fungal Tree of Life Project
  • Beetle Tree of Life project
  • Fly Tree of Life project
  • Mammal Tree of Life project
  • Cypriniformes Tree of Life project
  • Liverwort Tree of Life Project
  • Early Bird Tree of Life project
  • Early Bird Tree of Life project
  • Angiosperm Tree of Life project
  • Cnidaria Tree of Life Project
  • Decapoda Tree of Life Project

    LepTree.net,
    the Tree of Life project on Lepidoptera.


    http://www.rebeccashapley.com/cipres/telescoping.htm
    The Tree of Life blog
    Tree of Life at wikipedia.
  • Zoeken met Google


    Zoekmachine ;
     


    doorzoekt 4-sites, inclusief:
    http://tsjok45.multiply.com/photos
    http://anticreato.multiply.com/,
    http://evodisku.multiply.com/,
    http://www.bloggen.be/evodisku/ ,




      


    site search by freefind advanced

    Tomaso schrijft over      

    Evolutie /  Charles Darwin aan de basis:
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.SELECTIE NATUURLIJK
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DE LEVENSBOOM
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.UITSTERVEN
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.DEEP TIME
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Biogeografie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.SEKSUELE SELECTIE
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Al jaren lang samen CO-EVOLUTIE
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De economie van de natuur
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Geleidelijke veranderingen

    Unintelligent design:

    Blog Entry
    Ons gebit , De appendix,  Geboorte, 
    De weg van het zaad , Nervus  Laryngeus Recurrens,
    DNA , 75 mistakes , Het boek 

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Unintelligent design (1): Rechtop lopen
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Tomaso over het oog , oogspieren ,
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Unintelligent Design (5): ZWEETVOETEN 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Unintelligent design (6): Vitamine C 
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Unintelligent design (8): Kuitspieren
    DARWINJAAR

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.HET GELIJK VAN DARWIN

    Darwin is GEEN Heilige Sinterklaas
    2009 Année Darwin
    De eerste pasjes ?
    Darwinjaar trekt zich op gang I
    Darwinjaar trekt zich op gang II


    foto





















    Nederlandse  Blog-zwerm  /een selectie
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.me.myself.and.I.

    De Stoet

    Tsjok45    zie ook  MULTIPLY evodisku
    http://evodisku.multiply.com/tag/darwinjaar
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.PETER LOUTER
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.STRIPMAN
    Theodorus

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.RAMIREZI
    http://ramireziblog.blogspot.com/

    Cees Chamuleau
    Zoe van Zaal
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.MIEKE ROTH

    100 Woorden

    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Jeroen de Baaij
    Ragfijn
    Annelies
    Satuka

    Qabouter 1 Qabouter 2


    Pierra
    Johan H.v.D.
    Theo E. Korthals Altes

    Meneer Opinie 1 Meneer Opinie 2 Meneer Opinie 3

    Tomaso Tomaso 2

    Laila (??)
    Linda Morgan
    Wilma
    Kees Smit
    Henk van Leuken
    Iris
    Vroems
    Erik de Groot
    Ely
    Mephisto

    Thera

    Bart
    Rein John
    Martijn van Calmthout Martijn van Calmthout 2
    Draakhond
    Jeg Synes
    Jim Hasenaar
    Kokopelli
    Jos Goedmakers
    Fleur Frenkel Frank
    London Calling
    Maria Trepp
    Johan H. van D. 2
    Aad Verbaast
    Landheha
    Ina Dijstelberge


    sterk aanbevolen 
     
    Terrence :
    http://boomdeslevens.blogspot.com/    
    een voortzetting van het
    vroegere -->
    http://www.vkblog.nl/blog/125817/Neomuran_hypothesis

      
    De sublieme   
    PIERRA
    (uiteraard ook sterk aanbevolen )


    http://ascendenza.wordpress.com/2011/01/08/welkom-op-mijn-nieuwe-blog/
      http://www.vkblog.nl/blog/95678/Op_zoek_naar_de_klepel
     



    Tsjok45 photo site  MULTIPLY



    MULTIPLY evodisku 

    Blog Entry





     


     


    ANTI-CREATO   MULTIPLY



    Blog Entry INHOUD ANTI CREATO


    LINKS  NAAR VERKLARENDE  NOTEN
    (In verschillende talen )

  • INDEX   NOTES  : 
    http://evodisku.multiply.com/tag/inhoud%20%20notes

  • T -->

    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Meer blogs