Inhoud blog
  • Waarom leerlingen steeds slechter presteren op Nederlandse scholen; en grotendeels ook toepasselijk op Vlaams onderwijs!?
  • Waarom leerlingen steeds slechter presteren op Nederlandse scholen; en grotendeels ook toepasselijk op Vlaams onderwijs!?
  • Inspectie in Engeland kiest ander spoor dan in VlaanderenI Klemtoon op kernopdracht i.p.v. 1001 wollige ROK-criteria!
  • Meer lln met ernstige gedragsproblemen in l.o. -Verraste en verontwaardigde beleidsmakers Crevits (CD&V) & Steve Vandenberghe (So.a) ... wassen handen in onschuld en pakken uit met ingrepen die geen oplossing bieden!
  • Schorsing probleemleerlingen in lager onderwijs: verraste en verontwaardigde beleidsmakers wassen handen in onschuld en pakken uit met niet-effective maatregelen
    Zoeken in blog

    Beoordeel dit blog
      Zeer goed
      Goed
      Voldoende
      Nog wat bijwerken
      Nog veel werk aan
     
    Onderwijskrant Vlaanderen
    Vernieuwen: ja, maar in continuïteit!
    09-09-2017
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Reactie op 2 bijdragen in DS 9 september over Vlaams onderwijs als kampioen sociale discriminatie!????
    1. Reactie op 2 bijdragen in DS 9 september over Vlaams onderwijs als kampioen sociale discriminatie!????

      Sociologen Dirk Jacobs & Marc Swyngedouw: Vlaams onderwijs versterkt de sociale ongelijkheid (in: Een goede school mag geen gok zijn).

      Pol Goossens: Vlaams onderwijs bestendigt de breuklijnen van generatie op generatie (in: Ongelijke kansen, verspild talent).

      ...

      Onze reactie:

      Prof. socioloog Jaap Dronkers: Vlaams secundair onderwijs is uniek: combineert grote mate sociale gelijkheid met hoge effectiviteit dankzij unieke & gedifferentieerde structuur (o.a. 70% 12-jarigen die starten in sterke optie.)

      In een reactie op studie Jacobs wees prof. Wim van den Broeck daarnet Jacobs en Swyngedouw op een grote fout: Hij twitterde: "Enorm grote verschillen"? +- 10% groter dan OESO-gem. Beschrijving verschil is nog geen verklaring (fout 1ste orde).
      Reactie Wouter Ducyk
      Het heeft ook geen enkele zin te speculeren over die 15% tot er een deftige cognitie-vrije maat is. Krijgen teveel krediet
      Reactie Wim vd Broecck
      Zeker is alleszins dat die 15% niet volledig omgevingsfactoren zijn vanwege overlap met intelligentie (wellicht voor ong. 1/3).(1)

      -------------------------------------------------------------------

      Egalitaire ideologen Jacobs & Co hebben ongelijk http://www.bloggen.be/onderwijskrant/archief.php?ID=3015878 … o.a. scherpe kritiek van socioloog Jaap Dronkers op egalitaire onderwijsideologie van veel sociologen.

      Unlike my father Michael Young, I’m not an egalitarian http://www.bloggen.be/onderwijskrant/archief.php?ID=3012578 … Kritiek van Toby Young, zoon van Michael, op egalitaire onderwijsideologie.

      Kritiek op egalitaire sociologen als Jacobs & Co vanwege
      Franse sociologe Nathalie Bulle: egalitaire onderwijsvisie sociologen -als Jacobs -holde de schoolopdracht uit .(Skhole.fr 26/05/2016)

      Prof. Jan Van Damme, Bieke Defraine, Ides Nicaise: relatief weinig schooluitval in Vlaanderen dankzij differentiatie in lagere cyclus s.o. en technische opties (De sociale staat van Vlaanderen, 2013). Schooluitval in Vlaanderen (7 à 7, 5 % is zelfs stuk lager dan in Finland - een land met weinig kansarmen en allochtone leerlinge

      .
      In een andere tweet vandaag stelt Van den Broeck: "Echt wel probleem dat regelmatig studies in kranten verschijnen met allerlei maatschappelijke implicaties, die methodologisch niet deugen." Dit is o.I. zeker van toepassing op studie van Jacobs.

      Meer weergeven
    1. Egalitaire onderwijsideologie van socioloog Dirk Jacobs en Co leidt tot foutieve onderzoeksconclusies & valse beschuldigingen van het Vlaams onderwijs
    1. bloggen.be

    09-09-2017 om 20:49 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 5/5 - (1 Stemmen)
    Tags:sociale discriminatie, Jacobs
    >> Reageer (0)
    08-09-2017
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.'Taal, wiskunde ... sleutelcompetenties doen weken' = sterke niveaudaling!

    Er valt veel aan te merken met betrekking tot modieuze uitdrukkingen als wiskunde, taal .... 'doen werken', minder vanuit vakdisciplines werken en dus vakoverschrijdende aanpak, competentiegerichte aanpak, open leerplannen ... die nu ook de OVSG-onderwijskoepel lijkt te propageren.

    Deze uitspraken sluiten perfect aan bij de tekst 'Uitgangspunten' eindtermen -1996 die de DVO van Roger Standaert achteraf toevoegde bij de eindtermen. Het zijn dergelijke uitgangspunten die mede geleid hebben tot een gevoelige niveaudaling, tot een uitholling van het taalonderwijs, e.d.

    Het is overigens precies de aanbeden propagandist van de 'doen werken'-slogan, prof. Kris Van den Branden, die met zijn taakgerichte & constructivistische whole-language-aanpak mede verantwoordelijk was voor de uitholling van het taalonderwijs. Het is overigens ook Van den Branden die met zijn Steunpunt NT2 er voor gezorgd heeft dat er nog steeds geen intensief NT2-taalonderwijs is vanaf de eerste daq van het kleuteronderwijs. Ook Jan Saveyn, destijds leerplanverantwoordelijke van het katholiek lager onderwijs, poneerde in 2007 dat uitgerekend Van den Branden en zijn Leuvens taalcentrum, verantwoordelijk waren voor de niveaudaling & verwarring in het taalonderwijs.

    Moeten leerplannen niet langer zorgen voor de nodige gemeenschappelijkheid in het leeraanbod?

    Volgens de OVSG-directeur is het ook niet meer zo belangrijk dat de leerplannen borg staan voor de nodige gemeenschappelijkheid in het onderwijs. 'Standaardisering' is volgens hem niet zo belangrijk meer.

    De bedoeling van de leerplannen (en eindtermen) is ook het realiseren van de broodnodige gemeenschappelijkheid van het leeraanbod voor alle leerlingen en in alle scholen - en dit in functie van:

    (1) een aansluitend/doorlopend leeraanbod - bij verandering van leerjaar, van school en/of onderwijsnet, bij overgang naar s.o. of hoger onderwijs ...
    (Zo moet b.v. een leerkracht 2de leerjaar, een opsteller van een wiskundemethode... precies weten wat de leerlingen al geleerd hebben in het eerste leerjaar en wat volgt in de verdere leerjaren. )

    (2) het bieden van volwaardige en gelijke onderwijskansen

    (3) van het voorkomen van te grote concurrentie tussen scholen en onderwijsnetten.

    (4) van het kunnen ontwerpen van leerboeken/methodes die in de verschillende onderwijsnetten gebruikt kunnen worden

    (5) van het kunnen bewaken van het onderwijsniveau via evaluatie van de eindtermen, via centrale toetsen, via inspectie

    Als mede-opsteller van het leerplan wiskunde lager onderwijs (katholiek onderwijs) heb ik ook niet de indruk dat veel leerstofpunten uit het leerplan geschrapt kunnen worden. Precies de duidelijke opsomming van de leerstofpunten per leeftijdsgroep leidde tot een grote tevredenheid bij de leerkrachten, opstellers van wiskundemethodes, ... In de inspectierapporten kwam ook duidelijk tot uiting dat er met dit duidelijk leerplan geen problemen waren. In dit leerplan vindt men ook geen modieuze uitdrukkingen als 'wiskunde doen', leerlingen moeten hun kennis zelf construeren, competentiegerichte aanpak, contextuele aanpak ...

    De Vlaamse leerlingen 4de leerjaar scoorden overigens vrij goed voor TIMSS-2015.

    We voegen er nog een toepasselijke waarschuwing uit Schotland aan toe:

    The curriculum, introduced in Scottish schools in 2010,aims to give learners a "holistic understanding" of what it means to be a young Scot and sets out to equip pupils with four key "capacities", namely to be - successful learners, confident individuals, responsible citizens, and effective contributors.

    Prof Paterson told BBC Scotland that it could be disastrous for two reasons, one of which is the lack of academic rigour and structure.

    “But the major worry perhaps is even deeper than that, which is that it will widen inequality. The old academic knowledge - the best that has been thought and said by human beings - will still be given to the children of the well-educated middle class by their parents,” he said.

    "But the other children - who can't get it from their parents - are completely dependent on schools for it. And if they're not getting the best that has been thought and said from schools, they will get it from nowhere, and that will make inequality of learning and of culture wider than it has ever been."

    Zodra de einddoelen er zijn moeten we onze leerlijnen en leerplannen herdenken. Ook de hoeveelheid en de mate waarin ze competentiegericht zijn. Niet te veel…
    tijd.be

    08-09-2017 om 16:35 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:eindtermen, sleutelcompetenties
    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.My crusade  against New Math (1970-1982) & Constructivist Math (1988-.)

    My crusade  against New Math (1970-1982) & Constructivist Math (1988-.) in Belgium-Flemish

    Introduction: Math-wars: New Math & Constructivist -contextual Math

    1+1=2 you would think, but curiously enough, the approach to mathematics and arithmetic education has been regularly debated over the past 50 years - also for primary education. Until about 1970, there was little discussion about arithmetic and mathematics education in primary school. There was a broad consensus, both among practitioners and among the professional didacticians. The mathematics curricula in the different countries were very similar. The vision of the practitioners has always remained more or less the same.  

    Since about 1970,  mathematics wars have been fought. From 1970 onwards, we ourselves spent an enormous amount of time fighting two extreme visions that threaten classical arithmetic - and skills: from 1970 onwards the ‘formalistic’  New Mathematics; and from 1988 the' constructivist & contextual mathematics' of the Dutch Freudenthal Institute (Utrecht) and the US Standards (1989).  In this contribution, we limit ourselves to the fight against formalistic  New Mathematics (NW) . In the next article we show that constructivist mathematics unfortunately penetrated the learning  curricula for the first grade secondary education.  

    1. Breaking the taboo on criticism of the  New Mathematics in Belgium-Flemish in 1982

    Exactly 35 years ago, we succeeded in breaking the taboo on criticism of New Mathematics. In April 1982, we launched our campaign against the' New Mathematics' with the publication of a theme issue by Onderwijskrant with the challenging title: New Mathematics: een vlag op een modderschuit ( A flag on a mud boat, Onderwijskrant nr. 24). Partly because of the wide attention in the press, this publication provoked a huge number of positive reactions from teachers and ordinary citizens. A year later, a busy colloquium followed in the Congress Palace (Brussels) on' What Mathematics for 5- to 15-year-olds', where we took up the New Math supporters as prof. Roger Holvoet. 

    In May 1982, it became clear that mathematics was turned around. Since then, no more contributions have appeared about the many blessings of' new mathematics' (NM) .The taboo on criticism of the NM was' almost' broken through. In 1982, the inspector-general of technical education G. Smets wrote to us:"People at the top were bribed at the time to say nothing about New Mathematics" (see point 2). However, in 1982 we were not allowed to publicly mention his name.   After the publication of' Moderne wiskunde: een vlag op een modderschuit’ in April 1982, however, we were subjected to much criticism from the corner of the propagandists of modern mathematics, from Papy sympathisants, from the Leuven professors Roger Holvoet and Alfred Warrinnier, from inspectors who had participated in modern mathematics methods, from the chief leader of the Catholic Education, …

    2. Breaking down taboo on New Math- religion:' Top people were bribed to keep silent'. 

    With our mathematics campaign of 1982, we wanted to break the taboo around the NM. As a result of the campaign, a number of people dared to express their thoughts about the NM for the first time. Since 1968, there has been a taboo on the New Math. Liège professors Pirard and Godfrind expressed similar criticism in La Libre Belgique, 11.03. 1980, as ours. And they also protested against the taboo on the  NM. This was exactly what we ourselves have experienced since 1970 in Flanders.   In their publication the Liège professors also showed that the NM was a formalistic theory that no longer referred to reality, was born from the brain of a few mathematicians, but was not interesting for primary and secondary school.

    The reaction of prof. em. Karel Cuypers on our New Math- campaign was quite revelatory. Let us quote from his letter, which was later also included in' Person & Gemeenschap, September 1984. Cuypers:"Since my initial sympathy for the New Math Renewal, which came to me as' miraculous', I have felt that the Papysts (the group around Brussels prof. Georges Papy supported by the Brussels education minister Vermeylen) as hypnotists have led the school world. Rarely has an educational innovation happened in such a climate of pervasive ideological engagement as the' new-math' phenomenon.   All over the world, a force majeure was given to some prophets who could organize a spectacular show of persuasion with a hypnotic overthrow. Because of the enchantment that surrounds them, the secondary school teachers sat on the school benches to attend further training courses, which turned out to be remarkably theoretical and of little didactical help.. The situation had evolved so much that those who did not stand strong in the theory of sets  did not even dare to take the floor, for fear of being placed ignorant or stupid against the wall ". The many disgruntled teachers did not dare react openly either: congresses who did not agree were classed as conservative. 

    The inspector-general of technical education, G. Smets, wrote to us in a letter in response to the' ‘Mud boat-publication' of 1982:"Prof. Georges Papy had strong political relationships (including education minister Vermeylen) and ambitions. His lectures in Brussels and elsewhere were political meetings rather than scientific communications. His wife Frédérique also received large contributions from the then minister to experiment with new mathematics from nursery school. And then there were the many publishers who saw bread in a revolution of mathematics books. At the top a lot of people were literally bribed. 

     Also former inspector-mathematics E. H. Joniaux testified in a letter  that the introduction of the NM thanks to the Ministry's nepotism. He wrote:"Dear Mr Feys, at last, someone dared to rise up openly. New mathematics - and I have already said this since her first appearance - is the' philosophy' of mathematics, but not mathematics. And anyone who wants to teach this to children from 6 to 15 years old must have a lot of twists and turns in their brains. They wanted to fill the children with that - and this from kindergarten onwards. 

     Joniaux also caused me the critical contribution of the Liège professors Pirard and Godfrind, who had already been mentioned. They wrote:"Many scientists, including noble prizewinners in physics, point out that their science is of no benefit at all with the collection theory, but with applicable mathematics. The scientists protest because they still have to teach their students many important aspects of the ABC of applicable mathematics:" We had already read ourselves in 1973 that the German noble prize winner Carl Von Weizsäcker, too, opposed the introduction of NM in education. Dutch prof. Hans Freudenthal succeeded in keeping the NM outside primary education in the Netherlands. 

     Pirard and Godfrind wrote:"Prof. Georges Papy, was not an inventor but rather an importer of the mathematics manuals of Revuez in France. Papy liked to describe mathematics as a poetic dream and said:' Mathematics is not science, but art and a dream. The mathematician is a child or a poet who makes his dream a reality' (Berkeley, VVW-Lcongress). According to Pirard and Godfrind,"Many pupils experienced these mathematical dreams rather as a nightmare.

     The supersonic rise of modern mathematics was thus only possible thanks to influence, sponsorship and reform pressure from Minister Vermeylen and a few senior officials, which gave Papy the monopoly on mathematics education and imposed the introduction.  Policy makers also invested a huge amount of money in TV programmes, retraining, mathematics conferences and seminars of the Papy Group in luxury hotels in Knokke, etc. Prof. Papy presented the New Math  as the mathematics of the third industrial revolution'.

     In debates on mathematics education, not only professors, but also we were very frankly silenced with such little choruses. We did not, so to speak, pay any attention to the future, to the mathematics of the third industrial revolution, the mathematics which, according to the new lighters in Japan, Russia... had already led to many economic successes. We stated in 1973 that in many countries the New Math was already on the retreat and that the MW would probably not even reach the 21st century. We did not find a hearing, and the New Math curriculum was also introduced in primary education in 1976 and presented as an enormous step forward, as a salvation from the misery of classical mathematics education.

    3 Crusade against New Math (1970-1982)

    3.1 Our resistance during the period 1970-1981

    In the years 1968-1969, we were very much captivated by the barnum advertising for new mathematics presented by the propagandists as the mathematics of the third industrial revolution. As a student, we followed several lectures at the KU-Leuven and some lessons from Alfred Vermandel.   Our sympathy did not last long. From 1971 we distanced ourselves from formalistic & abstract NM

     In the early seventies we did our  best to convince those responsible for the educational umbrella organisations to not introduce ‘new mathematics' into primary education. We did this also on the VLO Start Colloquium of 1 September 1973 in the Congress Palace –Brussels.  In October 1974 we published a contribution on the New Math in' Person and Community'. We wrote that the new draft curriculum from the first year of study onwards wanted to use a formalistic mathematics language, an unpalatable heap of new terms and notations; in short: superfluous thickdoing. We also mentioned that in countries such as the USA, Japan, Germany, the Netherlands, Germany, etc., there was already a lot of criticism of' new mathematics. In the US: Davis, Beberman, Rosenbloom, Page, Scott.... In Germany, Nobel Prize winner Carl von Weizsäcker took the lead, in the Netherlands prof. Mathematics Hans Freudenthal. In Flanders, we took the lead in this. 

     We also warned in 1974 that if we chose the wrong path of New Mathematics in primary education, it would be very difficult to leave it again in the short term. (It took 22 years before a new curriculum came into being in 1998 without Modern Mathematics.  Unfortunately, the New Math was introduced into primary education in 1976, contrary to the views of the teachers. Our criticisms were haughtily swept away by the Papy Society, by academics, by curriculum designers, by mentors of mathematics.... We also noticed that not only teachers, but also inspectors, professors.... did not even dare to express their opinion; contradiction was not tolerated (see point 2). 

     Some of our criticisms of' Modern Mathematics'.  To too formalistic,' heavenly' (floating) mathematics * to early abstraction * to much verbal bullying and verbal ballast * to the detriment of the application aspect of mathematics (calculating, memorizing, automatistion...) *to the detriment of the application aspect of mathematics (classical issues, metering arithmetic, etc.)

    Little respect for the classical discipline of mathematics as a cultural product.  Achievable for many students: Too many pupils have to switch to special needs education after the third year of study.  Many parents are no longer able to accompany children. In point 5, we illustrate in detail how geometry was placed in the straitjacket of the NM and thus became totally formalistic.   As an alternative we chose in 1982 to update and dust off the many good elements and approaches from the mathematics tradition in our primary education, supplemented by a number of recent events such as three-dimensional geometric representations. We later implemented this in the 1998 curriculum.  

    3.2 Mathematics campaign 1982: ‘NM: a flag on a mud boat’ breaks through taboo

    In the years 1978-1982, a number of contributions appeared in which the supporters of' New Mathematics' broadly displayed the many blessings of this kind of mathematics. At the beginning of 1982, T. De Groote wrote triumphantly:"Where calculation for most children used to be a whip blow, it can now become a fantastic experience for them in a fascinating world, and" And the great one further fantasized:"that the less gifted students now have a better place for themselves" (Person and Community, jg). 28, p. 35-36). In my contacts with the practice, however, I did not see a fascinating world show up, but false results in false realities and weaker pupils who gave up. 

     These contributions about the many blessings of the New Math for primary education were the incentive for me to launch a campaign against the' Modern Mathematics' with a publication of' New Mathematics: a flag on a mud (muddle)boat' (Education paper no. 24) and the associated mathematics campaign, we were able to turn the maths time in 1982. Since then, no more contributions have appeared about the many blessings. However, a new curriculum was drawn up until 1998, in which the categories of modern mathematics were removed. 

     As a first step in the campaign, two thousand copies of the report' New Mathematics: a flag on a mud (muddle) boat' were distributed in April 1982. The campaign received a lot of reactions in the newspapers: De Morgen, Het Volk, Het Nieuwsblad, Libelle..... The articles about our campaign in four newspapers and two weeklies were very important for spreading the ideas and breaking the taboo. A number of people dared to express their opinions for the first time - also on paper. We received many enthusiastic reactions.

    3.3 Subsequent support from mathematics professors: Conversion Al Alfred Warrinnier (1987) et al. 

    In 1982 we still met with a lot of resistance because of a number of mathematics professors (Holvoet, Warrinnier, etc.), mathematics counsellors... Some of them converted afterwards. 

    The Leuven prof. Alfred Warrinnier sent his wife back in 1983 to the mathematical colloquium to lure me into the trap of asking whether the teacher wanted to define Feys exactly what mathematics meant in his opinion. A teacher may/cannot express a (critical) opinion on mathematics education. But in 1987 Warrinnier himself admitted that the introduction of modern mathematics was a bad thing - also in s. o. He wrote in De Standaard of 25 July 1987:"The 11,12 and 13 year olds were not ready to deal with the very abstract undertone of the collections- relation-function building up, the algebraic structures, etc. The reform of mathematics education has de facto failed. Five years after our mathematics campaign, our university opponent of yesteryear was right. In 1982 we concentrated on primary education, but a few years later our criticism was also passed on to s. o. and a few mathematics professors took part (see point 4).

    4 New Math: a child of structuralism of the 1930s - 40s.

    4.1 Mathematics teachers later endorsed our criticism of 1982

    In the' Modderschuit', we extensively illustrated "that the New Math of the Bourbaki Group could not be separated from the structuralist and logical-formalistic trend in scientific thinking from the 1930s onwards and thus led to a formalistic approach. In section 4.2, we will elaborate on this in detail. But first we dwell for a moment on the (future) criticism of mathematics teachers who confirmed our earlier criticism. 

    In the weekly' Intermediair' of 8 March 1994, the Leuven mathematics teachers Dirk Janssens and Dirk De Bock sit up the rise of the New Math. “The movement for' modern mathematics' was typical of people who only believe in a theoretical approach: one would use a single starting point from which all parts of mathematics could be neatly constructed. This turned out to be an illusion afterwards. The NM was created from the most advanced positions of the discipline itself and only afterwards did it become part of the education system.

    In the 1930s, a more or less revolutionary development took place. The so-called Bourbaki Group had ambitious plans to describe the full range of mathematics in a very systematic way, starting from axioms and the  set-doctrine. They wanted to deliver a beautiful system, which there was no need to get a pin in between. It was not until later that this model of mathematics construction was chosen as a model for the structure of mathematics education.  

    It was rather shocking that this modern mathematics was never pedagogically substantiated. The failure of the whole experiment was ingrained in advance. This search for (formal) foundations is only useful for people who have already mastered a certain mathematical culture, but is therefore not yet suitable for teaching mathematics to those who do not know anything about it. That turned out to be an educational illusion. But this kind of pedagogical discussion was not held at the time, modern mathematics became absolutely compulsory for all secondary school pupils from 1968 onwards. In the 1970s, primary education also followed. ...... 

     The urge for more and more abstraction (read: formalism) gradually made mathematics incomprehensible to the uninitiated. The fact that, for example, through a point outside a straight line, there is exactly one line that goes parallel to the given line, for example:' a line is a partition of a plane' and a term as length was introduced as a class of congruent lines:"This criticism from 1994 confirmed that our analysis of 1982 was also applicable to the New Math in the first degree secondary school.      

    Later in the magazine' Uitwiskeling' of 13 November 1994 we recorded analogous criticisms. One of the participants, Guido Roels (director of mathematics in the diocese of Ghent) answered the next day in' Voor de dag', the question why it took so long before the mathematicians realised that New Mathematics was a mistake. According to Roels, this was because the mathematicians were fascinated by the fact that' New Mathematics' so nicely put together' and did not see that this structure did not work in classroom. It was remarkable, however, that it took so long to realise this and that criticism abroad and our criticism were not heard since 1971.  

    4.2 Structuralist and logical-formalistic approach 

    In our publication of 1982 we also showed that "Bourbaki-mathematics could not be separated from the structuralist and logical-formalistic trend in scientific thinking from the 1930s onwards. Structuralism as a scientific method attempted to discover the same patterns, patterns, patterns, structures, etc. in the most diverse phenomena. It developed' grammatical',' comprehensive' concepts and a formal logical language to name them. From the formalistic/grammatical approach, for example, one saw in the concepts' is parallel with' and' is multiple of' the same grammatical structure; both concepts followed this approach, for example, a case of' reflexive relations': a number is multiple of itself a parallel is parallel with itself - and a reflexive relationship was suggested with a' loop'.     

    The things known from reality (e. g. parallel, angle, multiples of numbers....) are deployed in artificially created relationships almost independently of their meaning; they are especially interesting as elements of a set, as cross-section, as a couple, reflexive relationship.... Pragmatically seen e. g. the notions' parallel' and' is multiple of ‘ have nothing in common.  

    They tried to approach and organize all concepts with the help of a formal logic and some sort of' grammatical' concepts. The structuralist approach used the deductive approach and the formal logic as scientific instruments. A reform of a structural and formalistic nature was therefore chosen.  This leads to an erosion of the reality value of mathematics education.  

    The 'new mathematics' thus shifted to a new way of learning, in which the use of mathematics no longer takes place, but rather the learning of a structuralist grammar, which is central to the project. From our thesis on psychologist Jean Piaget, who was presented as the figurehead of modern mathematics at the time, we also referred in the' Modderschuit -1982 to the connection with structuralism within psychology. Piaget also used/misuse of the formal logic as a language to formulate his findings. In the philosophical work of prof.  Wiener-Kreis on. Prof. Apostel sought for formal-logical systems (languages) to describe the laws and regulations in the most diverse scientific disciplines (linguistics, psychology, economics, etc.). The older Apostel postle took distance from this. Apostle became an ally in the fight against constructivist mathematics of the Dutch Freudenthal Institute around 1990. 

     We refer to a similar analysis of Eddy Daniëls in Intermediair, 8 March 1994. Daniëls:"The inter-war was the phase in which they tried to forget the trenches of the first war. They wanted to focus all philosophical efforts on a completely deductive language that would eliminate all misunderstandings. "The logical-positivists of the Vienna County and the young Wittgenstein were also sick in this bed, according to him. According to Daniëls, the Bourbaki Group developed a formal mathematics theory that was fundamentally alienated from reality, which rather became oppressive instead of a liberating character. Because she designed a line of thought that literally suppressed the spontaneous urge to learn among children and young people.

    5.  Geometrics in a straightjacket of sets, relations … = formalism & rubricitis

    On the introduction of' New Math) in addition to the preservation of a number of classical subjects, we also receive a radical break with the traditional visual and functional approach: - a strictly logical-deductive structure; - the geometric concepts (flat, straight, rectangular, angle, triangle, rectangle, etc.) are put into the formal and abstract language of relations and collections; - abstract and hierarchical classification

    Based on the option for a logical-deductive build-up responsible inspector R. Barbry, the reason why the design theory could only be started in the fourth year of study. He wrote:"We only start in the fourth year of  primary school with the formation of the plane pi, which is an infinite collection of points. Gradually, the main characteristics and richness of the pi plane are discovered by boundaries (subsets: rights, figures, etc.). We frequently refer to the language of sets and relationships. Only in the fourth year of study is the basis to start with the design theory, in order to be able to apply the collection and relational language" (Barbry, 1978). New mathematics' overlooked the fact that children orientate themselves from birth and that the toddlers can and must learn to explore all kinds of figures in a visual way.

    Terms in straitjacket  of set theory, relations…

    Traditional notions were put into the straitjacket of the doctrine collections. Teachers had to explain that a (limited) segment is also an infinite set of points, because one can always make these points smaller. The parallelists were presented in a set with an empty cross-set (they have no points in common), and as a reflexive relationship with a loop arrow: after all, every line is parallel with itself. 

    An angle was defined and represented as the set of points of two half lines (belts of the angle) with the same starting point (angle). These points were presented with a set and the children had to learn that the points belonging to the classical corner sector do not belong to the angle (set).  A triangle was often represented as' a closed broken line, consisting of three segments; the points within the perimeter of the triangle no longer belonged to the triangle, represented by a venndiagram.

    Geometrics = classification 

    A considerable part of the formal education was taken up by the logical-hierarchical classification and deductive development of the network of flat and spatial figures. People always started from the more general (=empt) concepts. This means e. g. that the rectangle and the square (the more specific or filled up terms) were listed at the very end of the list. The curriculum of state education already stated as the objective for the second year of study:"In the collection of polygons, classify with the criterion: parallelism-evenness of sides or corners; and can present in a venn diagram". From the new formalistic definitions (e. g. a square is a rectangle with four equal sides, a parallelogram with....) one could think of a virtually unlimited number of classification assignments.

    A system of definitions and logical hierarchical classifications, choosing the order of the most general figures (= large size, poor content) to the most special (rich content, small size). Where the more specific, rich and everyday figures were treated first (e. g., for example, the more specific, rich and everyday figures). square and rectangle with their visual characteristics, they now started from trapezium and parallelogram. 

    The children were taught to describe the square and recognize it as a special kind of rectangle, rhombus, parallelogram,.... The square was last mentioned and was described as a subset of a rectangle, a pane.... A rectangle thus became a trapezium with all angles straight, but at the same time a parallelogram with 4 (or at least one) right angles, etc. Such hierarchical (evident) descriptions were quite abstract and variable, much more complex than the previously based enumeration of the various intuitive concepts. We could no longer connect with the intuitive concepts that the children had already formed and that mainly relate to the richer and beautiful figures. It went so far that some curriculum designers recommended that the square logiots should no longer be called square blocks, but rather' tile', because according to modern mathematics, a square logi block was just as much a kind of rectangle, rhombus, parallelogram... A mathematics supervisor made the teachers even point out that toddlers were not talking about square, rectangle, triangle … but respectively over tile, door and roof. And it was not until the fourth year of study that the geometric terms were allowed. However, the square was not allowed to be presented until last in the row and as a subset of the collection of quadrangles, trapezia, parallel icons, rectangles and windows. 

    6. What does New Math, as  an untouchable religion, teach us about fads?

    In this article we referred extensively to our mathematics campaign of 1982, the NM background and the New Math as a kind of religion that should not be criticised. Rages always display characteristics of religions. Those who do not participate are considered as renegades. New Math is one of the many rages in our education of the past 50 years. We can learn a lot from it.

    The New Math- propagandists initially hanged a caricature of classical mathematics and the multi-faced methodical approaches. They wrongly gave the impression that it used to be just memory work. The new lighters grabbed the NM as the mathematics of the future, the mathematics of the third industrial revolution - just like many new lighters in recent years with the so-called "Math of the 21st century ”.  

     The supersonic rise of new mathematics was only possible thanks to the influence and pressure from the ministry (Minister Vermeylen and top officials) which led to the creation of prof. Papy & Co got the monopoly; and thanks to the many propaganda from all kinds of policymakers.    Critics of the New Math, professors and even Directors-General  and inspectors, were silenced from above.  The Director-General for Technical Education, Smets, expressed his full support for our New Math campaign in 1982, but did not want his name to be mentioned. Today, censorship and self-censorship are greater than ever. We have also noted this recently in connection with the M decree. 

     The New Math--new lighters did not only deal with ailments over our hopelessly outdated mathematics education, but also with myths about the excellent economic results of countries such as Japan, Russia, etc. which introduced modern mathematics.

    Once the fad of new mathematics had passed, it wasn't easy to get back on track again. In primary education, many tried and tested approaches had been thrown into the dust and a break with the experience wisdom  had emerged. We did manage to put the tried and tested values and approaches back at the heart of the 1998 curriculum as a curriculum author. 

     In the first degree secondary school unfortunately, they opted for the extreme of the heavenly, formalistic New Math  the other extreme: the earthly, contextual and constructivist mathematics approach of the Dutch Freudenthal Institute (Utrecht) and the US Standards of 1989 (see next contribution). And so over the past 25 years, a new mathematics war has emerged in the Netherlands, the USA, Canada, and so on:  constructivist mathematics, which shows little appreciation for mathematics as a cultural discipline.

     

     

     

    08-09-2017 om 15:07 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:New Math, moderne wiskunde
    >> Reageer (0)
    07-09-2017
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen. zoon van acht jaar moet na één week buitengewoon onderwijs weer naar een gewone school

    M-decreet: Hasselt / Zonhoven - “Mijn zoon van acht jaar moet na één week buitengewoon onderwijs weer naar een gewone school”, zegt Tamara Peumans. “Hij is er zeer gelukkig en maakt met plezier zijn huiswerk. Helemaal anders dan vorig schooljaar, toen hij op een apart bankje zat. Maar nu heeft hij geen attest van het CLB en moet hij alweer weg uit de school.”

    “Mijn zoon zat vorig jaar in een gewone school in Zonhoven. Maar daar lukte het echt niet. Ook niet als hij zijn tweede leerjaar zou dubbelen. We hebben in mei al een gesprek gehad met school en CLB. Toen was er ook al sprake van het buitengewoon onderwijs. Dat vonden we een hele stap, dus hebben we toen beslist om hem nog even op die school te houden. Intussen zijn we alweer vijf maanden verder en merken we dat hij nog altijd met concentratieproblemen kampt. Dus hebben we hem ingeschreven in De Berk in Hasselt, in het buitengewoon onderwijs.

    Deze week horen we dat hij er niet kan blijven omdat we geen attest hebben van het CLB. Maar nu zit hij er al en hij is er zo gelukkig. Hij maakt met plezier zijn huiswerk, zijn faalangst is weg. In zijn vorige school zat hij op een apart bankje omdat hij concentratieproblemen heeft. Hij had ook last van bedplassen. Nu hij gehoord heeft dat hij niet in De Berk kan blijven, is hij opnieuw beginnen bedplassen. Hij kan echt niet terug naar zijn vorige school. Alweer een nieuwe school zoeken, wil ik hem ook niet aandoen. Drie scholen in een half jaar tijd? Waar zijn we dan mee bezig. Waarom hebben ze hem dan ingeschreven? Ik had hem ook niet gezegd dat hij er weg moet, maar hij heeft het van de buschauffeur gehoord. Vandaag de laatste dag?, vroeg die hem.”

    School

    “We zeggen altijd tegen de ouders dat hun kind pas definitief ingeschreven is, als ze daarvoor ook een zogenaamd ‘verslag van het M-decreet’ voor hebben’”, reageert Luc Piccard, directeur van De Berk. “Zonder dat attest kunnen wij kinderen niet inschrijven. Bij ons zat de jongen in het basisaanbod, dat is de klas voor normaal begaafden met leerproblemen. We hebben ook zelf contact opgenomen met het CLB, maar daar zeggen ze dat het zorgtraject nog niet afgerond is. Hij kan hier dus niet blijven.” Vroeger waren de regels voor het buitengewoon onderwijs minder streng. “Nu zijn die heel duidelijk. Je kan een CLB ook niet onder druk zetten om toch maar een attest te geven.”

    CLB

    “Het M-decreet betekent dat onderwijs zo veel mogelijk inclusief moet zijn”, zegt Christine Tielemans, algemeen directeur van Vrij CLB Limburg. “We bekijken dus per kind welke hulp dit kan krijgen in het gewone onderwijs, want je moet kinderen alle kansen geven. Buitengewoon onderwijs is pas de allerlaatste fase. We doorlopen met kinderen een volledig zorgtraject. Wat we zeker niet doen, is zomaar een papiertje schrijven.”

    Vlaams minister van Onderwijs Hilde Crevits vindt het vooral belangrijk dat elk kind het meest gepaste onderwijs kan krijgen. “Ouders, school en CLB moeten samen zoeken naar de beste oplossing in het belang van de leerling”, zegt Crevits. “Als een leerling in het gewoon onderwijs zorg nodig heeft, wordt er een zorgtraject uitgestippeld. Daarna wordt in dialoog bekeken wat het beste is voor het kind en of er een attest wordt toegekend om naar het buitengewoon onderwijs te kunnen. Maar de leerling mag hoe dan ook nooit de dupe zijn.”

    “Mijn zoon van acht jaar moet na één week buitengewoon onderwijs weer naar een gewone school”, zegt Tamara Peumans. “Hij is er zeer gelukkig en maakt met p...
    hbvl.be

    07-09-2017 om 10:32 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:M-decreet
    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Mollenhauer in '83: Nieulichters stellen essentie 'cultureel leren' in negatief daglicht
    Mollenhauer betreurde in 1983 dat veel 'moderne' pedagogen de meest essentiële kenmerken (samenhangen) van het opvoedings- en onderwijsgebeuren 'vergeten' waren en deze zelfs in een negatief daglicht stelden.

    Klaus Mollenhauer (1928 - 1998) geldt als een van de belangrijkste Duitse pedagogen uit de vorige eeuw. De oorspronkelijke Nederlandse versie van Vergeten Samenhang verscheen in 1983. Het boek is inmiddels een pedagogische klassieker. Het wordt als een van de belangrijkste Duitse bijdragen beschouwd aan de twintigste-eeuwse opvoedings- en vormingstheorie. Het boek werd, naar het Nederlands, ook in andere talen vertaald, waaronder het Japans en het Engels.

    De Duitse emancipatorische pedagoog 'Klaus Mollenhauer' schreef in 1983 een boek over met als titel 'Vergeten samenhangen. Over cultuur en opvoeding' (Meppel, Boom, 1983). Hierin betreurde Mollenhauer dat veel 'moderne' pedagogen de meest essentiële kenmerken (samenhangen) van het opvoedings- en onderwijsgebeuren 'vergeten' waren en deze zelfs in een negatief daglicht stelden.
    Bij het leren op school gaat het volgens Mollenhauer vooral om cultureel leren. Mollenhauer nam expliciet afstand van "een pedagogische benadering die zich overwegend baseert op het innerlijke van de leerling, op zijn emotionele ervaring van zichzelf en van een ander, op zijn persoonlijke communicatie, op zijn esthetische creativiteit, kortom op de irrationele componenten van de romantische traditie."

    Mollenhauer betreurt dat opvoeding en onderwijs vaak verschrompelen tot “leren vanuit de eigen ervaring en tot 'menslievende omgang met kinderen': aardig zijn en emotionele betrokkenheid tonen, aandacht hebben voor de gevoelens en leervragen van het kind en voor ogenblikkelijk succes en welbevinden”.

    Opvoeding en onderwijs hebben volgens hem alles te maken met cultuuroverdracht die vooral belichaamd wordt in de persoon van de leerkracht. In de ogen van velen betekent cultuuroverdracht en aandacht voor leerprestaties echter niets minder dan nefaste beïnvloeding en onderwerping van de leerlingen aan de leerkrachten en aan de leerinhouden. Opvoeding en onderwijs blijven volgens Mollenhauer "in de eerste plaats overlevering, overdracht van datgene wat voor ons belangrijk is.
    En hoe complexer de sociale wereld wordt, des te minder zal een kind in zijn primaire leefwereld kunnen vinden wat het voor zijn toekomst nodig heeft. Leren op school is als het ware ook steeds 'anticiperend leren': de leerling komt in aanraking met die gedeelten van de maatschappelijk-historische cultuur die voor de kinderlijke ervaring ontoegankelijk zijn."

    Traditioneel gaat men er volgens Mollenhauer ook vanuit dat het kind vormbaar is en ook actief aan die vorming moet meewerken. Maar 'vormbaarheid' en 'actieve en zelfstandige inbreng' worden dan wel niet opgevat als zelfontplooiing en zelfconstructie, als zaken die in een mild klimaat of in een 'rijk milieu' a.h.w. vanzelf gedijen – zoals in de kindvolgende visie van prof. Ferre Laevers en CEGO. Het gaat meer om geleide constructie van kennis, om geleid probleemoplossend leren waaraan de leerling actief participeert.

    Mollenhauer stelt dat het begrip cultuuroverdracht steeds gekoppeld werd aan het geloof in de vormbaarheid van de leerling en aan het bevorderen van zijn toekomstige zelfstandigheid, autonomie. “We respecteren de waarde van het kind en we stimuleren zijn actieve en zelfstandige inbreng door eisen aan het kind te stellen en door het actief te begeleiden. We begeleiden het kind tot op een bepaald punt waarop het zelf verder het probleem kan oplossen of aanpakken. ... De leraar heeft de verantwoordelijkheid de verstandelijke vermogens uit te dagen door mobiliteit en inspanning van het abstractievermogen te eisen. De vaardigheden die het kind zich op deze manier 'eigen maakt' zijn dan tegelijkertijd eigen vermogens, productiekrachten van de eigen vorming. En op het moment dat een jonge mens geen uitdagingen meer nodig heeft, is hij in staat zichzelf te vormen en eindigt ook de taak van het onderwijs.

    De ervaringsgerichte en kindvolgende EGO-visie van Laevers en het Leuvens CEGO waarbij leerlingen worden gezien als creatieve wezens die slechts ruimte of een 'rijk milieu' nodig hebben om tot de meest persoonlijke van alle persoonlijke ontplooiingen te kunnen komen, is niet aan Mollenhauer besteed. Dit geldt ook voor het gezelligheids-en ontplooiingsdenken, de anti-autoritaire scholen, de antipedagogiek, het ontscholingsdenken met zijn ontintellectualisering en ont-systematisering.


    Klaus Mollenhauer & Forgotten Connections This video is about author and activist Klaus Mollenhauer and about his book, forgotten connections, which is recently published in English by Routledge as translated… vimeo.com

    07-09-2017 om 00:00 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:Mollenhauer, cultureel leren
    >> Reageer (0)
    06-09-2017
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Lessen over financiën/ vak economie: belangrijk? Ipv lessen ...
    Lessen over financiën Reacties: *Minister Crevits: Groot draagvlak voor lessen financiën & burgerschap op school. *Michel Mausþ Veel moed aan de leraars die pakweg woonfiscaliteit of notionele interestaftrek aan scholieren moeten uitleggen... Belastingontwijking in eindtermen? Top. *Raf Feys: Terugdringen van uitholling taalonderwijs lijkt me veel belangrijker. Volgens PISA scoren Vlaamse 15 j overigens vrij goed voor financiële geletterdheid Moeilijk om hiervoor concrete eindtermen op te stellen en deze in de verschillende leerplannen onder te brengen. En a.u.b. geen nieuw vak economie & financiële geletterdheid in eerste graad s.o. Welke eindtermen taal, wiskunde, geschiedenis ... moeten plaats ruimen voor eindtermen financiële geletterdheid? Leerlingen krijgen les over financiën en ondernemen Alle leerlingen zullen een basis economische en financiële vaardigheden aanleren op school. Dat blijkt uit de voorlopige tekst over de nieuwe eindtermen die De Tijd kon inkijken. Ook ondernemingszin moet op school worden gestimuleerd. tijd.be

    06-09-2017 om 18:57 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:financiële geletterdheid
    >> Reageer (8)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Michael Young -1958 : intellectuele aanleg bepaalt grotendeels SES : haaks op Jacobs, Agiradag, Nicaise

    Did my father - Michael Young ) predict the populist revolts of the last year?
    He thought that in time a meritocracy would always be replaced by a hereditary elite

    Citaat : Toby Young, de zoon van Michael Young, stelt dat zijn vader in 'The Rise of meritocracy' -1956 - beklemtoonde dat de intellectuele aanleg grotendeels de sociaal-economische status bepaalde.

    Vlaamse sociologen als Jacobs, Agirdag, Nicaise ... beroepen zich vaak op Michael Young, maar verzwijgen/negeren dat volgens Young de SES grotendeels bepaald wordt door de intellectuele aanlag.
    -------------------------------------------------------------------------

    It often surprises people to learn that my father’s critique of meritocracy was underpinned by his belief that human differences are rooted in genetics, a view many on the left associate with neo-liberal economics and the libertarian right.

    How could the man who wrote the 1945 Labour manifesto and played an important part in creating the welfare state be a hereditarian? Surely the creed of socialism depends on believing that all men are born with the same innate capacities, and the reason some succeed and others fail is because of environmental differences?

    Before trying to solve this puzzle, let me summarise the reason Michael thought meritocracy was doomed to fail. The problem, according to him, is that the abilities rewarded in a meritocratic society, namely, exceptional intelligence and drive, are natural gifts rather than learned characteristics.

    So you get plenty of social mobility when the principle first takes hold but, as a meritocratic society matures, this begins to tail off because the offspring of those at the top are more likely to have these traits than the children of those at the bottom.

    Of course there are exceptions. Genetic variation means highly able children are born to parents of lower intelligence and vice-versa. But the children of the cognitive elite still have the dice loaded in their favour, and that remains true even if you eliminate environmental advantages. Over time, my father believed, the fluidity and dynamism unleashed by meritocracy would be replaced by a rigid caste system underpinned by biology, leading to widespread discontent.

    Was that the cause of the electoral revolts of last year? The conventional wisdom is that it can’t possibly have been, because Britain and America aren’t genuine meritocracies. However, when you ask people why they think that, they automatically point to low levels of social mobility, and, by itself, that doesn’t disprove my father’s hypothesis. On the contrary, it could be evidence that both countries are on their way to becoming mature meritocracies.

    You have to look at other things, such as the extent to which IQ predicts socioeconomic status, and whether it is indeed genetically based.

    I interviewed several leading authorities on these subjects for my radio programme, including Peter Saunders, a former sociology professor at Sussex University, and Professor Robert Plomin, a behavioural geneticist at King’s College, London. It turns out my father may have been on to something, although I should say that neither Saunders nor Plomin share his pessimism about meritocracy degenerating into a genetically based class system. Of all the people I interviewed, only Charles Murray, a fellow of the American Enterprise Institute, endorses this prognosis.

    Murray himself has been the target of left-wing student protests ever since he co-authored The Bell Curve in 1994, a book that documented the emergence of America’s meritocratic ruling class and warned of the potentially harmful consequences of segregating society according to IQ.
    He happens to be a conservative, but often points out that there’s nothing inherently right-wing about believing variations in human personal characteristics, such as intelligence, are based on genetic differences. It doesn’t automatically lead to social Darwinism or eugenics, as some on the left seem to think. After all, if the exceptional abilities of the meritocratic elite are characteristics they were born with and have done nothing to deserve, then they don’t deserve the rewards that flow from them.

    Seen in this light, the hereditarian critique of meritocracy could be the basis of an argument for more redistributive taxation.

    My father thought social status should be based on how decent and kind people are, not whether they happen to have the right genes. Idealistic, perhaps, but the left would be wise to try to incorporate the findings of behaviour geneticists into their political philosophy rather than continue to deny them. Why? Because they’re almost certainly right.

    The Rise and Fall of the Meritocracy is on Radio 4 at 8 P.M. on 10 April.

    Bijlage 1

    However, my father also identified another problem with meritocracy — one that’s harder to dismiss. That’s the tendency within meritocracies for the cognitive elite to become a self-perpetuating oligarchy. This isn’t a criticism you’ll often hear of grammar schools, because it involves accepting that intelligence, or lack of intelligence, has a genetic basis and, as such, is at least partly passed on from parents to their children. That’s a live rail in the education debate, because once you accept it then various unpopular conclusions follow. For one thing, it means that a more meritocratic education policy won’t necessarily lead to greater social mobility. Perhaps in the past, when intelligence was more equally distributed between classes, it would have done. But in today’s Britain, where IQ is the single greatest predictor of socioeconomic status, the children of the better off are more likely to pass the 11-plus, and that would remain true — might even become more true — if you could design a tutor-proof test.

    Admittedly, if you compare children’s IQ to that of their parents, there’s a reversion to the norm, but the decline isn’t steep enough to offset the built-in advantage that children of high-IQ parents have. It’s also true that people of below-average intelligence can have bright children, but, again, it doesn’t happen often enough to solve the problem of social ossification.
    The unwelcome truth is that the underlying rate of social mobility in meritocratic societies is bound to be quite low — probably a big part of the reason it’s so low in contemporary Britain. Not that the UK is wholly meritocratic, but it’s meritocratic enough that any expansion of grammar schools would probably mean less social mobility rather than more.

    In The Rise of the Meritocracy, the absence of opportunities for the vast majority to better themselves leads to a bloody revolution in 2033. We’re some way off that, but it’s still a big problem that successive governments have

    Bijlage 2: Toy Young over zijn vader Michael Young

    Michael Young was born in 1915, the son of an Irish bohemian painter and a Daily Express journalist. He had a miserable childhood, being packed off to the sort of prep schools that George Orwell wrote about in ‘Such, Such Were the Joys’, but was saved at the age of 13 by a fairy godmother in the form of Dorothy Elmhirst, an eccentric American millionaire. She had started a school in South Devon called Dartington Hall that was the only school in England that taught fruit farming. As luck would have it, my father had a rich Australian uncle with a fruit farm who offered to pay the fees.

    Dorothy and her husband Leonard, a Yorkshireman, more or less adopted Michael. Instead of sending him home in the summer holidays, they took him with them on their annual jaunt to America and treated him like one of their own. He travelled in a first-class berth on RMS Aquitania, learned how to sail on Martha’s Vineyard and, on one memorable night, dined at the White House with Franklin D. Roosevelt.

    When he left Dartington at the age of 18, Dorothy set him up with a small trust fund, as well as a lifetime’s supply of Sobranie cigarettes.

    Michael’s first notable achievement was writing a pamphlet for a pressure group called Political and Economic Planning at the age of 22, in which he argued that if war broke out the government mustn’t delay introducing conscription.

    Churchill read it and was so impressed that he immediately offered my father a job as his private secretary. He accepted, but the offer was withdrawn when Churchill discovered he was a member of the Holborn branch of the Communist party.

    Michael went on to run the Labour party’s research department and, in that capacity, wrote the 1945 Labour manifesto. He spent the next six years at the heart of the Attlee government, laying the foundations of the welfare state, then left in 1951 to do a PhD at the LSE. His doctorate formed the basis of a book called Family and Kinship in East London which, to this day, is referred to by sociology students as ‘Fakinel’.

    But it was his next book that really made his name — The Rise of the Meritocracy. A dystopian satire in the same mould as Brave New World, it purported to be an historical essay written by an academic in the mid-21st century about the emergence of a new ruling class whose claim to power was based on their superior intellect.

    The book was intended as a satirical critique of what my father regarded as a pernicious way of justifying inequality and it irritated him for the rest of his life that the word he’d coined to describe this ghastly new phenomenon — meritocracy — was generally used by politicians to describe something wholly desirable.

    At this point, Michael’s place in the history of post-war Britain was guaranteed, but he was just getting started. He set up a research institute in Bethnal Green that, for the next 50 years, became a kind of organisational supernova, pumping out an endless stream of new institutions: the Consumers Association, Which? magazine, the Social Science Research Council, the University of the Third Age, the School for Social Entrepreneurs, Grandparents Plus… it goes on and on. The historian Noel Annan compared him to Cadmus, the founder of Thebes in Greek mythology: ‘Whatever field he tilled, he sowed dragon’s teeth and armed men seemed to spring from the soil to form an organisation.’

    And if you think all of that is impressive, he also co-founded the Open University. Whenever I’m at risk of feeling a little too pleased with myself because I’ve helped set up a handful of schools, I remind myself that Michael helped establish the single largest educational institution in the world. At any one time, the Open University has a quarter of a million students, an astonishing figure.

    I was the product of Michael’s second marriage and shared a home with him for the first 18 years of my life. At the time, I thought he was a great dad, a figure of towering authority, but now that I’m a father myself I realise how little time he spent with his children. I can clearly remember playing football with him in Waterlow Park on my ninth birthday. A lovely memory, to be sure, but the reason I can recall it is because it was one of the very few occasions he took me to the park. My children, by contrast, will have no specific memories of playing football with their dad, because we do it every weekend.

    For Michael, the work always came first. He’d been given a great gift by Dorothy Elmhirst, who’d saved him from neglect, and that left him with an overwhelming sense of obligation to do the same for others. If I’m going to achieve anything else in the next 30 years, it must be driven by the same philanthropic impulse.

    Great Lives: Michael Young will be broadcast on Radio 4 on 23 December at 4.30 p.m. and repeated on Boxing Day at 11 p.m. Toby Young is associate editor of The Spectator.

    I’ve just made a programme for Radio 4 about the populist revolts that swept Britain and America last year. Were they predicted in a book written by my father,…
    spectator.co.uk



    06-09-2017 om 18:50 geschreven door Raf Feys  

    0 1 2 3 4 5 - Gemiddelde waardering: 0/5 - (0 Stemmen)
    Tags:SES, GOK, sociale discriminatie
    >> Reageer (0)


    Archief per week
  • 30/04-06/05 2018
  • 23/04-29/04 2018
  • 16/04-22/04 2018
  • 09/04-15/04 2018
  • 02/04-08/04 2018
  • 26/03-01/04 2018
  • 19/03-25/03 2018
  • 12/03-18/03 2018
  • 05/03-11/03 2018
  • 26/02-04/03 2018
  • 19/02-25/02 2018
  • 12/02-18/02 2018
  • 05/02-11/02 2018
  • 29/01-04/02 2018
  • 22/01-28/01 2018
  • 15/01-21/01 2018
  • 08/01-14/01 2018
  • 01/01-07/01 2018
  • 25/12-31/12 2017
  • 18/12-24/12 2017
  • 11/12-17/12 2017
  • 04/12-10/12 2017
  • 27/11-03/12 2017
  • 20/11-26/11 2017
  • 13/11-19/11 2017
  • 06/11-12/11 2017
  • 30/10-05/11 2017
  • 23/10-29/10 2017
  • 16/10-22/10 2017
  • 09/10-15/10 2017
  • 02/10-08/10 2017
  • 25/09-01/10 2017
  • 18/09-24/09 2017
  • 11/09-17/09 2017
  • 04/09-10/09 2017
  • 28/08-03/09 2017
  • 21/08-27/08 2017
  • 14/08-20/08 2017
  • 07/08-13/08 2017
  • 31/07-06/08 2017
  • 24/07-30/07 2017
  • 17/07-23/07 2017
  • 10/07-16/07 2017
  • 03/07-09/07 2017
  • 26/06-02/07 2017
  • 19/06-25/06 2017
  • 05/06-11/06 2017
  • 29/05-04/06 2017
  • 22/05-28/05 2017
  • 15/05-21/05 2017
  • 08/05-14/05 2017
  • 01/05-07/05 2017
  • 24/04-30/04 2017
  • 17/04-23/04 2017
  • 10/04-16/04 2017
  • 03/04-09/04 2017
  • 27/03-02/04 2017
  • 20/03-26/03 2017
  • 13/03-19/03 2017
  • 06/03-12/03 2017
  • 27/02-05/03 2017
  • 20/02-26/02 2017
  • 13/02-19/02 2017
  • 06/02-12/02 2017
  • 30/01-05/02 2017
  • 23/01-29/01 2017
  • 16/01-22/01 2017
  • 09/01-15/01 2017
  • 02/01-08/01 2017
  • 26/12-01/01 2017
  • 19/12-25/12 2016
  • 12/12-18/12 2016
  • 05/12-11/12 2016
  • 28/11-04/12 2016
  • 21/11-27/11 2016
  • 14/11-20/11 2016
  • 07/11-13/11 2016
  • 31/10-06/11 2016
  • 24/10-30/10 2016
  • 17/10-23/10 2016
  • 10/10-16/10 2016
  • 03/10-09/10 2016
  • 26/09-02/10 2016
  • 19/09-25/09 2016
  • 12/09-18/09 2016
  • 05/09-11/09 2016
  • 29/08-04/09 2016
  • 22/08-28/08 2016
  • 15/08-21/08 2016
  • 25/07-31/07 2016
  • 18/07-24/07 2016
  • 11/07-17/07 2016
  • 04/07-10/07 2016
  • 27/06-03/07 2016
  • 20/06-26/06 2016
  • 13/06-19/06 2016
  • 06/06-12/06 2016
  • 30/05-05/06 2016
  • 23/05-29/05 2016
  • 16/05-22/05 2016
  • 09/05-15/05 2016
  • 02/05-08/05 2016
  • 25/04-01/05 2016
  • 18/04-24/04 2016
  • 11/04-17/04 2016
  • 04/04-10/04 2016
  • 28/03-03/04 2016
  • 21/03-27/03 2016
  • 14/03-20/03 2016
  • 07/03-13/03 2016
  • 29/02-06/03 2016
  • 22/02-28/02 2016
  • 15/02-21/02 2016
  • 08/02-14/02 2016
  • 01/02-07/02 2016
  • 25/01-31/01 2016
  • 18/01-24/01 2016
  • 11/01-17/01 2016
  • 04/01-10/01 2016
  • 28/12-03/01 2016
  • 21/12-27/12 2015
  • 14/12-20/12 2015
  • 07/12-13/12 2015
  • 30/11-06/12 2015
  • 23/11-29/11 2015
  • 16/11-22/11 2015
  • 09/11-15/11 2015
  • 02/11-08/11 2015
  • 26/10-01/11 2015
  • 19/10-25/10 2015
  • 12/10-18/10 2015
  • 05/10-11/10 2015
  • 28/09-04/10 2015
  • 21/09-27/09 2015
  • 14/09-20/09 2015
  • 07/09-13/09 2015
  • 31/08-06/09 2015
  • 24/08-30/08 2015
  • 17/08-23/08 2015
  • 10/08-16/08 2015
  • 03/08-09/08 2015
  • 27/07-02/08 2015
  • 20/07-26/07 2015
  • 13/07-19/07 2015
  • 06/07-12/07 2015
  • 29/06-05/07 2015
  • 22/06-28/06 2015
  • 15/06-21/06 2015
  • 08/06-14/06 2015
  • 01/06-07/06 2015
  • 25/05-31/05 2015
  • 18/05-24/05 2015
  • 11/05-17/05 2015
  • 04/05-10/05 2015
  • 27/04-03/05 2015
  • 20/04-26/04 2015
  • 13/04-19/04 2015
  • 06/04-12/04 2015
  • 30/03-05/04 2015
  • 23/03-29/03 2015
  • 16/03-22/03 2015
  • 09/03-15/03 2015
  • 02/03-08/03 2015
  • 23/02-01/03 2015
  • 16/02-22/02 2015
  • 09/02-15/02 2015
  • 02/02-08/02 2015
  • 26/01-01/02 2015
  • 19/01-25/01 2015
  • 12/01-18/01 2015
  • 05/01-11/01 2015
  • 29/12-04/01 2015
  • 22/12-28/12 2014
  • 15/12-21/12 2014
  • 08/12-14/12 2014
  • 01/12-07/12 2014
  • 24/11-30/11 2014
  • 17/11-23/11 2014
  • 10/11-16/11 2014
  • 03/11-09/11 2014
  • 27/10-02/11 2014
  • 20/10-26/10 2014
  • 13/10-19/10 2014
  • 06/10-12/10 2014
  • 29/09-05/10 2014
  • 22/09-28/09 2014
  • 15/09-21/09 2014
  • 08/09-14/09 2014
  • 01/09-07/09 2014
  • 25/08-31/08 2014
  • 18/08-24/08 2014
  • 11/08-17/08 2014
  • 04/08-10/08 2014
  • 28/07-03/08 2014
  • 21/07-27/07 2014
  • 14/07-20/07 2014
  • 07/07-13/07 2014
  • 30/06-06/07 2014
  • 23/06-29/06 2014
  • 16/06-22/06 2014
  • 09/06-15/06 2014
  • 02/06-08/06 2014
  • 26/05-01/06 2014
  • 19/05-25/05 2014
  • 12/05-18/05 2014
  • 05/05-11/05 2014
  • 28/04-04/05 2014
  • 14/04-20/04 2014
  • 07/04-13/04 2014
  • 31/03-06/04 2014
  • 24/03-30/03 2014
  • 17/03-23/03 2014
  • 10/03-16/03 2014
  • 03/03-09/03 2014
  • 24/02-02/03 2014
  • 17/02-23/02 2014
  • 10/02-16/02 2014
  • 03/02-09/02 2014
  • 27/01-02/02 2014
  • 20/01-26/01 2014
  • 13/01-19/01 2014
  • 06/01-12/01 2014
  • 30/12-05/01 2014
  • 23/12-29/12 2013
  • 16/12-22/12 2013
  • 09/12-15/12 2013
  • 02/12-08/12 2013
  • 25/11-01/12 2013
  • 18/11-24/11 2013
  • 11/11-17/11 2013
  • 04/11-10/11 2013
  • 28/10-03/11 2013
  • 21/10-27/10 2013

    E-mail mij

    Druk op onderstaande knop om mij te e-mailen.


    Gastenboek

    Druk op onderstaande knop om een berichtje achter te laten in mijn gastenboek


    Blog als favoriet !


    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Bloggen.be, eenvoudig, gratis en snel jouw eigen blog!