Inhoud blog
  • JAAR VAN DE HAAN 16-12
  • JAAR VAN DE HAAN 15-12
  • JAAR VAN DE HAAN 14-12
  • JAAR VAN DE HAAN 13-12
  • JAAR VAN DE HAAN 12-12
    Zoeken in blog

    Foto
    Noli turbare circulos meos (Archimedes)


    GNOMON
    Wiskunde zie je!
    24-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Macht van een punt t.o.v. een cirkel - deel 2 ...

    MACHT VAN EEN PUNT T.O.V. EEN CIRKEL - DEEL 2

    Ken je nog de definitie en eigenschap van de macht van een punt t.o.v. een cirkel?

    In dit tweede deel (gisteren verscheen deel 1) beschouwen we een punt P buiten een cirkel.


    Als twee halfrechten vanuit een punt P buiten een cirkel die cirkel respectievelijk snijden en de punten A en B en de punten C en D, dan is .

    Dit is uiteraard een direct gevolg van het feit dat de driehoeken PAD en PCB gelijkvormig zijn.

    Als C = D is PC een raaklijn aan de cirkel en in dat geval is 

    Op het onderstaande plaatje zie je hoe deze laatste formule ook rechtstreeks kunt bewezen worden via de stelling van Pythagoras.

    Gezien?

    win animated GIF


    24-05-2015 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    23-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Wiskunde en bedrijfspsychologie

    WISKUNDE EN BEDRIJFSPSYCHOLOGIE
    Bron: De Druivelaar



    23-05-2015 om 12:07 geschreven door Luc Gheysens  


    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Knippuzzel

    De onderstaande knippuzzel is een mooie toepassing op de stelling van Pythagoras.

    OPGAVE 1.
    Met vijf identieke vierkanten maakt men een kruis.
    Kan je deze figuur in VIJF stukken knippen
    waarmee je dan een vierkant kunt vormen?


    OPLOSSING

     



    OPGAVE 2.
    Kan je het kruis uit opgave 1 ook in VIER stukken knippen
    waarmee je weer een vierkant kunt vormen?

    OPLOSSING IN BIJLAGE!

    breathing_square.gif

    Bijlagen:
    KNIPPUZZEL.pdf (178.2 KB)   

    23-05-2015 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Macht van een punt t.o.v. een cirkel - deel 1

    MACHT VAN EEN PUNT T.O.V. EEN CIRKEL - DEEL 1

    Ken je nog de definitie en eigenschap van de macht van een punt t.o.v. een cirkel?

    In dit eerste deel (morgen volgt deel 2) beschouwen we een punt P binnen een cirkel.

    Als de koorden [AB] en [CD] van een cirkel elkaar snijden in een punt P, dan is .

    Dit is uiteraard een direct gevolg van het feit dat de driehoeken APD en CPB gelijkvormig zijn.
    Maar wat kan je dan zeggen over de koorden [AD] en [CB]?
    Welnu, stel dat de cirkel een ronde vijver zou voorstellen en dat twee roeiers tegelijk vertrekken uit A en C.
    Als hun snelheden zo zijn dat ze in P zouden botsen met elkaar, dan zouden ze,
    wanneer ze gelijktijdig uit A en C vertrekken en respectievelijk naar D en B toe roeien ook gelijktijdig in D en B arriveren.

    Kan je dat bewijzen?


    Op het onderstaande plaatje zie je nog hoe via  'een bewijs zonder woorden' de cosinusregel (voor een scherphoekige driehoek)
    volgt uit de hierboven vermelde eigenschap van het macht van een punt (hier het punt M) t.o.v. een cirkel.

    Gezien?

    win animated GIF

    23-05-2015 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    22-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Ptolemaeus en de cosinusregel

    PTOLEMAEUS EN DE COSINUSREGEL

    De fameuze (en een beetje vergeten) stelling van Ptolemaeus voor een koordenvierhoek luidt als volgt:

    In een koordenvierhoek is het product van de lengtes van de diagonalen gelijk aan
    de som van de producten van de lengtes van de paren overstaande zijden.


     


    Voor het bewijs volstaat het 4 keer de cosinusregel toe te passen:

    op Δ ABD en  Δ BCD waarbij ∠ BAD en ∠ DCB supplementaire hoeken zijn

    en op Δ ABC en  Δ CDA waarbij ∠ ABC en ∠ CDA supplementaire hoeken zijn.

    Door hieruit telkens de cosinussen te elimineren vind je uiteindelijk (reken maar eens na!) dat

    Door deze uitdrukkingen tenslotte lid-aan-lid met elkaar te vermenigvuldigen, bekom je de gewenste formule.

    ****************************************************************************************************

    En zie je ook op het onderstaande plaatje hoe via  'een bewijs zonder woorden' 

     de cosinusregel (voor een stomphoekige driehoek) volgt uit de stelling van Ptolemaeus?

       

    high five animated GIF

    22-05-2015 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    21-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Griekse versie van het kruisproduct

    GRIEKSE VERSIE VAN HET KRUISPRODUCT

    De Griekse wiskunde was van oorsprong 'meetkundig'.

    Men had dus voor heel wat algebraïsche eigenschappen een visuele verklaring.

    De welbekende eigenschap voor het kruisproduct

    krijgt via het onderstaande plaatje 'een Griekse' verklaring:

    als de richtingscoëfficiënt van AB gelijk is aan die van BC dan hebben de groene en de blauwe rechthoek dezelfde oppervlakte!

    EUREKA  animated - by hetorakelt

    Met dank aan Martin Kindt.

    21-05-2015 om 11:33 geschreven door Luc Gheysens  


    >> Reageer (0)
    19-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.' s Werelds gemakkelijkste quiz

    Onder het motto 'de (wiskunde)boog kan niet altijd gespannen staan' serveren we je vandaag een ludieke quiz.
    Wie 4 van de 8 vragen juist kan beantwoorden is meteen geslaagd!
     
    Bron: www.alle-tests.nl/quiz28/quiz/1282066087/s-Werelds-makkelijkste-quiz.
    Daar vind je ook de juiste antwoorden



    En ja, een quiz winnen kan een mens blij maken!

    happy animated GIF


    19-05-2015 om 15:48 geschreven door Luc Gheysens  


    >> Reageer (0)
    18-05-2015
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.NUM'ART (3)

    NUM'ART is een artistiek project bedacht door Luc Janus.

    Hij zet hierbij elke week een getal op een artistieke manier in de kijker.

    *********************************************************************************************************
    3


     The third man - Luc Janus

    *********************************************************************************************************

    3 dimensies (en misschien wel de tijd als vierde dimensie ?)

    3 aggregatietoestanden: vast, vloeibaar en gas.
    Ken je ook de juiste benamingen voor de overgang van de ene naar de andere toestand?

    De astronoom Edwin Hubble bedacht een systeem om de verschillende vormen van sterrenstelsels in te delen.
    Het systeem kent drie hoofdgroepen: E: elliptische stelsel, S: spiraalstelsels, SB: balkspiraalstelsels.
    Daarnaast zijn er nog sterrenstelsels die niet aan bovenstaande vormen voldoen,
    deze worden Ir (van Irregular, onregelmatig): onregelmatige sterrenstelsels of Pec (van Peculiar, eigenaardig) genoemd.

    *********************************************************************************************************

    Een melkstoeltje heeft maar drie poten en is daarom het meest stabiele stoeltje:
    ook als één poot wat korter is dan de andere blijft het toch staan zonder te wiebelen.

    Als men in onderwijsmiddens spreekt van 'competenties',
    dan heeft men het over kennis, attitudes en vaardigheden
    die meteen de drie poten symboliseren voor een evenwichtige aanpak van de leerplannen.

    *********************************************************************************************************

    The third man is een Engelse film noir uit 1949 van regisseur Carol Reed met onder meer Joseph Cotten, Orson Welles en Alida Valli.
    De muziek, die werd geschreven en uitgevoerd door Anton Karas op citer,
    maakt de spanning van de thriller extra dreigend en werd welhaast even klassiek als de film zelf.
    De achtervolging in de riolen van Wenen is een legendarische filmscène.

    Bekijk je nog eens een stukje uit deze film (Harry Lime thema) met één van de beroemdste katten uit de filmwereld?

    18-05-2015 om 07:53 geschreven door Luc Gheysens  


    >> Reageer (0)


    Archief per week
  • 11/12-17/12 2017
  • 04/12-10/12 2017
  • 27/11-03/12 2017
  • 20/11-26/11 2017
  • 13/11-19/11 2017
  • 06/11-12/11 2017
  • 30/10-05/11 2017
  • 23/10-29/10 2017
  • 16/10-22/10 2017
  • 09/10-15/10 2017
  • 02/10-08/10 2017
  • 25/09-01/10 2017
  • 18/09-24/09 2017
  • 11/09-17/09 2017
  • 04/09-10/09 2017
  • 28/08-03/09 2017
  • 21/08-27/08 2017
  • 14/08-20/08 2017
  • 07/08-13/08 2017
  • 31/07-06/08 2017
  • 24/07-30/07 2017
  • 17/07-23/07 2017
  • 10/07-16/07 2017
  • 03/07-09/07 2017
  • 26/06-02/07 2017
  • 19/06-25/06 2017
  • 12/06-18/06 2017
  • 05/06-11/06 2017
  • 29/05-04/06 2017
  • 22/05-28/05 2017
  • 15/05-21/05 2017
  • 08/05-14/05 2017
  • 01/05-07/05 2017
  • 24/04-30/04 2017
  • 17/04-23/04 2017
  • 10/04-16/04 2017
  • 03/04-09/04 2017
  • 27/03-02/04 2017
  • 20/03-26/03 2017
  • 13/03-19/03 2017
  • 06/03-12/03 2017
  • 27/02-05/03 2017
  • 20/02-26/02 2017
  • 13/02-19/02 2017
  • 06/02-12/02 2017
  • 30/01-05/02 2017
  • 23/01-29/01 2017
  • 16/01-22/01 2017
  • 09/01-15/01 2017
  • 02/01-08/01 2017
  • 25/12-31/12 2017
  • 19/12-25/12 2016
  • 12/12-18/12 2016
  • 05/12-11/12 2016
  • 28/11-04/12 2016
  • 21/11-27/11 2016
  • 14/11-20/11 2016
  • 07/11-13/11 2016
  • 31/10-06/11 2016
  • 24/10-30/10 2016
  • 17/10-23/10 2016
  • 10/10-16/10 2016
  • 03/10-09/10 2016
  • 26/09-02/10 2016
  • 19/09-25/09 2016
  • 12/09-18/09 2016
  • 05/09-11/09 2016
  • 29/08-04/09 2016
  • 22/08-28/08 2016
  • 15/08-21/08 2016
  • 08/08-14/08 2016
  • 01/08-07/08 2016
  • 25/07-31/07 2016
  • 18/07-24/07 2016
  • 11/07-17/07 2016
  • 04/07-10/07 2016
  • 27/06-03/07 2016
  • 20/06-26/06 2016
  • 13/06-19/06 2016
  • 06/06-12/06 2016
  • 30/05-05/06 2016
  • 23/05-29/05 2016
  • 16/05-22/05 2016
  • 09/05-15/05 2016
  • 02/05-08/05 2016
  • 25/04-01/05 2016
  • 18/04-24/04 2016
  • 11/04-17/04 2016
  • 04/04-10/04 2016
  • 28/03-03/04 2016
  • 21/03-27/03 2016
  • 14/03-20/03 2016
  • 07/03-13/03 2016
  • 29/02-06/03 2016
  • 22/02-28/02 2016
  • 15/02-21/02 2016
  • 08/02-14/02 2016
  • 01/02-07/02 2016
  • 25/01-31/01 2016
  • 18/01-24/01 2016
  • 11/01-17/01 2016
  • 04/01-10/01 2016
  • 28/12-03/01 2021
  • 21/12-27/12 2015
  • 14/12-20/12 2015
  • 07/12-13/12 2015
  • 30/11-06/12 2015
  • 23/11-29/11 2015
  • 16/11-22/11 2015
  • 09/11-15/11 2015
  • 02/11-08/11 2015
  • 26/10-01/11 2015
  • 19/10-25/10 2015
  • 12/10-18/10 2015
  • 05/10-11/10 2015
  • 28/09-04/10 2015
  • 21/09-27/09 2015
  • 14/09-20/09 2015
  • 07/09-13/09 2015
  • 31/08-06/09 2015
  • 24/08-30/08 2015
  • 17/08-23/08 2015
  • 10/08-16/08 2015
  • 03/08-09/08 2015
  • 27/07-02/08 2015
  • 20/07-26/07 2015
  • 13/07-19/07 2015
  • 06/07-12/07 2015
  • 29/06-05/07 2015
  • 22/06-28/06 2015
  • 15/06-21/06 2015
  • 08/06-14/06 2015
  • 01/06-07/06 2015
  • 25/05-31/05 2015
  • 18/05-24/05 2015
  • 11/05-17/05 2015
  • 04/05-10/05 2015
  • 27/04-03/05 2015
  • 20/04-26/04 2015
  • 13/04-19/04 2015
  • 06/04-12/04 2015
  • 30/03-05/04 2015
  • 23/03-29/03 2015
  • 16/03-22/03 2015
  • 09/03-15/03 2015
  • 02/03-08/03 2015
  • 23/02-01/03 2015
  • 16/02-22/02 2015
  • 09/02-15/02 2015
  • 02/02-08/02 2015
  • 26/01-01/02 2015
  • 19/01-25/01 2015
  • 12/01-18/01 2015
  • 05/01-11/01 2015
  • 29/12-04/01 2015
  • 22/12-28/12 2014
  • 15/12-21/12 2014
  • 08/12-14/12 2014
  • 01/12-07/12 2014
  • 24/11-30/11 2014
  • 17/11-23/11 2014
  • 10/11-16/11 2014
  • 03/11-09/11 2014
  • 27/10-02/11 2014
  • 20/10-26/10 2014
  • 13/10-19/10 2014
  • 06/10-12/10 2014
  • 29/09-05/10 2014
  • 22/09-28/09 2014
  • 15/09-21/09 2014
  • 08/09-14/09 2014
  • 01/09-07/09 2014
  • 25/08-31/08 2014
  • 18/08-24/08 2014
  • 04/08-10/08 2014
  • 21/07-27/07 2014
  • 07/07-13/07 2014
  • 30/06-06/07 2014
  • 16/06-22/06 2014
  • 09/06-15/06 2014
  • 28/04-04/05 2014
  • 21/04-27/04 2014
  • 14/04-20/04 2014
  • 07/04-13/04 2014
  • 31/03-06/04 2014
  • 24/03-30/03 2014
  • 17/03-23/03 2014
  • 10/03-16/03 2014
  • 03/03-09/03 2014
  • 24/02-02/03 2014
  • 17/02-23/02 2014
  • 10/02-16/02 2014
  • 03/02-09/02 2014
  • 27/01-02/02 2014
  • 20/01-26/01 2014
  • 13/01-19/01 2014
  • 06/01-12/01 2014
  • 30/12-05/01 2014
  • 23/12-29/12 2013
  • 16/12-22/12 2013
  • 09/12-15/12 2013
  • 02/12-08/12 2013
  • 25/11-01/12 2013
  • 18/11-24/11 2013
  • 11/11-17/11 2013
  • 04/11-10/11 2013
  • 28/10-03/11 2013
  • 21/10-27/10 2013
  • 14/10-20/10 2013
  • 07/10-13/10 2013
  • 30/09-06/10 2013
  • 23/09-29/09 2013
  • 16/09-22/09 2013
  • 09/09-15/09 2013
  • 02/09-08/09 2013
  • 26/08-01/09 2013
  • 19/08-25/08 2013
  • 12/08-18/08 2013
  • 05/08-11/08 2013
  • 29/07-04/08 2013
  • 22/07-28/07 2013
  • 15/07-21/07 2013
  • 08/07-14/07 2013
  • 01/07-07/07 2013
  • 24/06-30/06 2013
  • 17/06-23/06 2013
  • 10/06-16/06 2013
  • 03/06-09/06 2013
  • 27/05-02/06 2013
  • 20/05-26/05 2013
  • 13/05-19/05 2013
  • 06/05-12/05 2013
  • 29/04-05/05 2013
  • 22/04-28/04 2013
  • 15/04-21/04 2013
  • 08/04-14/04 2013
  • 01/04-07/04 2013
  • 25/03-31/03 2013
  • 18/03-24/03 2013
  • 11/03-17/03 2013
  • 04/03-10/03 2013
  • 25/02-03/03 2013
  • 18/02-24/02 2013
  • 11/02-17/02 2013
  • 04/02-10/02 2013
  • 28/01-03/02 2013
  • 21/01-27/01 2013
  • 07/01-13/01 2013
  • 31/12-06/01 2013
  • 24/12-30/12 2012
  • 17/12-23/12 2012
  • 10/12-16/12 2012
  • 03/12-09/12 2012
  • 26/11-02/12 2012
  • 19/11-25/11 2012
  • 12/11-18/11 2012
  • 05/11-11/11 2012
  • 29/10-04/11 2012
  • 22/10-28/10 2012
  • 15/10-21/10 2012
  • 08/10-14/10 2012
  • 01/10-07/10 2012
  • 24/09-30/09 2012
  • 17/09-23/09 2012
  • 10/09-16/09 2012
  • 03/09-09/09 2012
  • 27/08-02/09 2012
  • 20/08-26/08 2012
  • 13/08-19/08 2012
  • 06/08-12/08 2012
  • 30/07-05/08 2012
  • 23/07-29/07 2012
  • 16/07-22/07 2012
  • 09/07-15/07 2012
  • 02/07-08/07 2012
  • 25/06-01/07 2012
  • 18/06-24/06 2012
  • 11/06-17/06 2012
  • 04/06-10/06 2012
  • 28/05-03/06 2012
  • 21/05-27/05 2012
  • 30/04-06/05 2012
  • 23/04-29/04 2012
  • 16/04-22/04 2012
  • 09/04-15/04 2012
  • 02/04-08/04 2012
  • 26/03-01/04 2012
  • 12/03-18/03 2012
  • 05/03-11/03 2012
  • 27/02-04/03 2012
  • 20/02-26/02 2012
  • 13/02-19/02 2012
  • 06/02-12/02 2012
  • 30/01-05/02 2012
  • 23/01-29/01 2012
  • 16/01-22/01 2012
  • 09/01-15/01 2012
  • 02/01-08/01 2012
  • 26/12-01/01 2012
  • 12/12-18/12 2011
  • 05/12-11/12 2011
  • 28/11-04/12 2011
  • 14/11-20/11 2011
  • 07/11-13/11 2011
  • 31/10-06/11 2011
  • 24/10-30/10 2011
  • 10/10-16/10 2011
  • 12/09-18/09 2011
  • 05/09-11/09 2011
  • 29/08-04/09 2011
  • 15/08-21/08 2011
  • 04/07-10/07 2011
  • 27/06-03/07 2011
  • 20/06-26/06 2011
  • 13/06-19/06 2011
  • 06/06-12/06 2011
  • 30/05-05/06 2011
  • 16/05-22/05 2011
  • 28/03-03/04 2011
  • 14/02-20/02 2011
  • 24/01-30/01 2011
  • 17/01-23/01 2011
  • 10/01-16/01 2011
  • 03/01-09/01 2011
  • 20/12-26/12 2010
  • 13/12-19/12 2010
  • 06/12-12/12 2010
  • 20/09-26/09 2010
  • 06/09-12/09 2010
  • 23/08-29/08 2010
  • 19/07-25/07 2010
  • 12/07-18/07 2010
  • 05/07-11/07 2010
  • 28/06-04/07 2010
  • 21/06-27/06 2010
  • 14/06-20/06 2010
  • 10/05-16/05 2010
  • 05/04-11/04 2010
  • 29/03-04/04 2010
  • 15/03-21/03 2010
  • 08/03-14/03 2010
  • 15/02-21/02 2010
  • 08/02-14/02 2010
  • 09/11-15/11 2009
  • 02/11-08/11 2009
  • 26/10-01/11 2009
  • 19/10-25/10 2009
  • 05/10-11/10 2009
  • 28/09-04/10 2009
  • 21/09-27/09 2009
  • 07/09-13/09 2009
  • 31/08-06/09 2009
  • 27/07-02/08 2009
  • 20/07-26/07 2009
  • 13/07-19/07 2009
  • 06/07-12/07 2009
  • 29/06-05/07 2009
  • 22/06-28/06 2009
  • 15/06-21/06 2009
  • 01/06-07/06 2009
  • 25/05-31/05 2009
  • 18/05-24/05 2009
  • 11/05-17/05 2009
  • 27/04-03/05 2009

    E-mail mij

    Druk op onderstaande knop om mij te e-mailen.


    Blog als favoriet !

    Zoeken met Google




    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Bloggen.be, eenvoudig, gratis en snel jouw eigen blog!