Inhoud blog
  • JAAR VAN DE HAAN 18-12
  • JAAR VAN DE HAAN 17-12
  • JAAR VAN DE HAAN 16-12
  • JAAR VAN DE HAAN 15-12
  • JAAR VAN DE HAAN 14-12
    Zoeken in blog

    Foto
    Noli turbare circulos meos (Archimedes)


    GNOMON
    Wiskunde zie je!
    18-05-2013
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Gulden rechthoek

    GULDEN RECHTHOEK

    Een gulden rechthoek is een rechthoek waarvan de verhouding van de lengte tot breedte
    gelijk is aan het getal  φ van de gulden snede.

    De gulden rechthoek speelt een bijzondere rol in de kunst.
    Zo blijkt de voorgevel van het Parthenon perfect te passen binnen een gulden rechthoek.
    De Griekse letter φ (phi) zou dan ook verwijzen naar Phidias, de bouwheer van deze tempel.



           


    Voor de constructie met passer en liniaal van een gulden rechthoek
    verwijzen praktisch alle bronnen naar de bovenstaande linkse figuur.
    Ik vraag me af waarom men het niet doet volgens de rechtse figuur
    die vertrekt van een rechthoekige driehoek waarvan de zijden lengte 1, 2 en √5 hebben.
    Toch veel eenvoudiger?


    Een dergelijke rechthoekige driehoek kan je bovendien 'opvullen'
    met vijf kleinere congruente driehoeken die gelijkvormig zijn met de grote driehoek, zoals je op de bovenstaande figuur ziet..
    We hebben hier dus een mooi voorbeeld van een rep-tile (zie voorgaande rubriek op mijn blog).
                  
    Animal Reptile Animated Images

    18-05-2013 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    16-05-2013
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Hoe ver ligt de horizon?

    Hoe ver ligt de horizon als je kijkt vanop een toren met hoogte h?



    Stel dat h jouw ooghoogte is en dat we voor de gemiddelde aardstraal R de waarde 6 370 km nemen.
    Via de stelling van Pythagoras kunnen we dan hiermee berekenen hoe ver je kunt zien
    (d.w.z. op welke afstand D de horizon ligt):

    D = (h + R) zodat D = 2Rh + h.

    Hierbij is h verwaarloosbaar klein ten opzichte van de term 2Rh, zodat D ≈  √(2Rh).

    Rekening houdend met de waarde van R kunnen dan bij benadering stellen dat D = 3,6 . √h
    waarbij de ooghoogte h in meter is uitgedrukt en D in kilometer.

    Begin mei 2013 werd op het One World Trade Center in New York
    (op de plaats waar de Twin Towers stonden) als sluitstuk een antenne geplaatst.
    De toren werd hiermee 541,325 meter hoog.
    Als je weet dat 1 voet overeenkomt met 0,3048 meter dan blijkt dat de toren 1776 voet hoog is.
    En 1776 is niet toevallig het jaar van de Amerikaanse onfhankelijkheidsverklaring!

    Kan je nu ook berekenen hoe ver de arbeiders konden zien toen ze die antenne plaatsten?
    En hoe ver ziet een persoon de horizon als zijn ooghoogte 1,70 meter bedraagt?

    16-05-2013 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    14-05-2013
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Phi en de regelmatige vijfhoek

    Phi en de regelmatige vijfhoek

    Hieronder is een regelmatige vijfhoek getekend.

    Waarom is de verhouding van de lengte van de diagonalen tot de lengte van de zijden  gelijk aan het getal φ (gulden snede)?

    Dit betekent m.a.w. dat de diagonalen lengte φ hebben als de zijden lengte 1 hebben!


    Gebruik hiervoor de onderstaande figuur en de gekende goniometrische waarde (zie bijlage)


    En wist je dat er in een icosader (regelmatig twintigvlak)
    drie gulden rechthoeken verscholen zitten.
    Dit zijn rechthoeken waarvan de verhouding van de lengte tot de breedte gelijk is aan φ.

    Zie bijvoorbeeld: http://www.goldennumber.net/geometry/

    Bijlagen:
    Berekening cos 36.pdf (173.7 KB)   

    14-05-2013 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)


    Archief per week
  • 18/12-24/12 2017
  • 11/12-17/12 2017
  • 04/12-10/12 2017
  • 27/11-03/12 2017
  • 20/11-26/11 2017
  • 13/11-19/11 2017
  • 06/11-12/11 2017
  • 30/10-05/11 2017
  • 23/10-29/10 2017
  • 16/10-22/10 2017
  • 09/10-15/10 2017
  • 02/10-08/10 2017
  • 25/09-01/10 2017
  • 18/09-24/09 2017
  • 11/09-17/09 2017
  • 04/09-10/09 2017
  • 28/08-03/09 2017
  • 21/08-27/08 2017
  • 14/08-20/08 2017
  • 07/08-13/08 2017
  • 31/07-06/08 2017
  • 24/07-30/07 2017
  • 17/07-23/07 2017
  • 10/07-16/07 2017
  • 03/07-09/07 2017
  • 26/06-02/07 2017
  • 19/06-25/06 2017
  • 12/06-18/06 2017
  • 05/06-11/06 2017
  • 29/05-04/06 2017
  • 22/05-28/05 2017
  • 15/05-21/05 2017
  • 08/05-14/05 2017
  • 01/05-07/05 2017
  • 24/04-30/04 2017
  • 17/04-23/04 2017
  • 10/04-16/04 2017
  • 03/04-09/04 2017
  • 27/03-02/04 2017
  • 20/03-26/03 2017
  • 13/03-19/03 2017
  • 06/03-12/03 2017
  • 27/02-05/03 2017
  • 20/02-26/02 2017
  • 13/02-19/02 2017
  • 06/02-12/02 2017
  • 30/01-05/02 2017
  • 23/01-29/01 2017
  • 16/01-22/01 2017
  • 09/01-15/01 2017
  • 02/01-08/01 2017
  • 25/12-31/12 2017
  • 19/12-25/12 2016
  • 12/12-18/12 2016
  • 05/12-11/12 2016
  • 28/11-04/12 2016
  • 21/11-27/11 2016
  • 14/11-20/11 2016
  • 07/11-13/11 2016
  • 31/10-06/11 2016
  • 24/10-30/10 2016
  • 17/10-23/10 2016
  • 10/10-16/10 2016
  • 03/10-09/10 2016
  • 26/09-02/10 2016
  • 19/09-25/09 2016
  • 12/09-18/09 2016
  • 05/09-11/09 2016
  • 29/08-04/09 2016
  • 22/08-28/08 2016
  • 15/08-21/08 2016
  • 08/08-14/08 2016
  • 01/08-07/08 2016
  • 25/07-31/07 2016
  • 18/07-24/07 2016
  • 11/07-17/07 2016
  • 04/07-10/07 2016
  • 27/06-03/07 2016
  • 20/06-26/06 2016
  • 13/06-19/06 2016
  • 06/06-12/06 2016
  • 30/05-05/06 2016
  • 23/05-29/05 2016
  • 16/05-22/05 2016
  • 09/05-15/05 2016
  • 02/05-08/05 2016
  • 25/04-01/05 2016
  • 18/04-24/04 2016
  • 11/04-17/04 2016
  • 04/04-10/04 2016
  • 28/03-03/04 2016
  • 21/03-27/03 2016
  • 14/03-20/03 2016
  • 07/03-13/03 2016
  • 29/02-06/03 2016
  • 22/02-28/02 2016
  • 15/02-21/02 2016
  • 08/02-14/02 2016
  • 01/02-07/02 2016
  • 25/01-31/01 2016
  • 18/01-24/01 2016
  • 11/01-17/01 2016
  • 04/01-10/01 2016
  • 28/12-03/01 2021
  • 21/12-27/12 2015
  • 14/12-20/12 2015
  • 07/12-13/12 2015
  • 30/11-06/12 2015
  • 23/11-29/11 2015
  • 16/11-22/11 2015
  • 09/11-15/11 2015
  • 02/11-08/11 2015
  • 26/10-01/11 2015
  • 19/10-25/10 2015
  • 12/10-18/10 2015
  • 05/10-11/10 2015
  • 28/09-04/10 2015
  • 21/09-27/09 2015
  • 14/09-20/09 2015
  • 07/09-13/09 2015
  • 31/08-06/09 2015
  • 24/08-30/08 2015
  • 17/08-23/08 2015
  • 10/08-16/08 2015
  • 03/08-09/08 2015
  • 27/07-02/08 2015
  • 20/07-26/07 2015
  • 13/07-19/07 2015
  • 06/07-12/07 2015
  • 29/06-05/07 2015
  • 22/06-28/06 2015
  • 15/06-21/06 2015
  • 08/06-14/06 2015
  • 01/06-07/06 2015
  • 25/05-31/05 2015
  • 18/05-24/05 2015
  • 11/05-17/05 2015
  • 04/05-10/05 2015
  • 27/04-03/05 2015
  • 20/04-26/04 2015
  • 13/04-19/04 2015
  • 06/04-12/04 2015
  • 30/03-05/04 2015
  • 23/03-29/03 2015
  • 16/03-22/03 2015
  • 09/03-15/03 2015
  • 02/03-08/03 2015
  • 23/02-01/03 2015
  • 16/02-22/02 2015
  • 09/02-15/02 2015
  • 02/02-08/02 2015
  • 26/01-01/02 2015
  • 19/01-25/01 2015
  • 12/01-18/01 2015
  • 05/01-11/01 2015
  • 29/12-04/01 2015
  • 22/12-28/12 2014
  • 15/12-21/12 2014
  • 08/12-14/12 2014
  • 01/12-07/12 2014
  • 24/11-30/11 2014
  • 17/11-23/11 2014
  • 10/11-16/11 2014
  • 03/11-09/11 2014
  • 27/10-02/11 2014
  • 20/10-26/10 2014
  • 13/10-19/10 2014
  • 06/10-12/10 2014
  • 29/09-05/10 2014
  • 22/09-28/09 2014
  • 15/09-21/09 2014
  • 08/09-14/09 2014
  • 01/09-07/09 2014
  • 25/08-31/08 2014
  • 18/08-24/08 2014
  • 04/08-10/08 2014
  • 21/07-27/07 2014
  • 07/07-13/07 2014
  • 30/06-06/07 2014
  • 16/06-22/06 2014
  • 09/06-15/06 2014
  • 28/04-04/05 2014
  • 21/04-27/04 2014
  • 14/04-20/04 2014
  • 07/04-13/04 2014
  • 31/03-06/04 2014
  • 24/03-30/03 2014
  • 17/03-23/03 2014
  • 10/03-16/03 2014
  • 03/03-09/03 2014
  • 24/02-02/03 2014
  • 17/02-23/02 2014
  • 10/02-16/02 2014
  • 03/02-09/02 2014
  • 27/01-02/02 2014
  • 20/01-26/01 2014
  • 13/01-19/01 2014
  • 06/01-12/01 2014
  • 30/12-05/01 2014
  • 23/12-29/12 2013
  • 16/12-22/12 2013
  • 09/12-15/12 2013
  • 02/12-08/12 2013
  • 25/11-01/12 2013
  • 18/11-24/11 2013
  • 11/11-17/11 2013
  • 04/11-10/11 2013
  • 28/10-03/11 2013
  • 21/10-27/10 2013
  • 14/10-20/10 2013
  • 07/10-13/10 2013
  • 30/09-06/10 2013
  • 23/09-29/09 2013
  • 16/09-22/09 2013
  • 09/09-15/09 2013
  • 02/09-08/09 2013
  • 26/08-01/09 2013
  • 19/08-25/08 2013
  • 12/08-18/08 2013
  • 05/08-11/08 2013
  • 29/07-04/08 2013
  • 22/07-28/07 2013
  • 15/07-21/07 2013
  • 08/07-14/07 2013
  • 01/07-07/07 2013
  • 24/06-30/06 2013
  • 17/06-23/06 2013
  • 10/06-16/06 2013
  • 03/06-09/06 2013
  • 27/05-02/06 2013
  • 20/05-26/05 2013
  • 13/05-19/05 2013
  • 06/05-12/05 2013
  • 29/04-05/05 2013
  • 22/04-28/04 2013
  • 15/04-21/04 2013
  • 08/04-14/04 2013
  • 01/04-07/04 2013
  • 25/03-31/03 2013
  • 18/03-24/03 2013
  • 11/03-17/03 2013
  • 04/03-10/03 2013
  • 25/02-03/03 2013
  • 18/02-24/02 2013
  • 11/02-17/02 2013
  • 04/02-10/02 2013
  • 28/01-03/02 2013
  • 21/01-27/01 2013
  • 07/01-13/01 2013
  • 31/12-06/01 2013
  • 24/12-30/12 2012
  • 17/12-23/12 2012
  • 10/12-16/12 2012
  • 03/12-09/12 2012
  • 26/11-02/12 2012
  • 19/11-25/11 2012
  • 12/11-18/11 2012
  • 05/11-11/11 2012
  • 29/10-04/11 2012
  • 22/10-28/10 2012
  • 15/10-21/10 2012
  • 08/10-14/10 2012
  • 01/10-07/10 2012
  • 24/09-30/09 2012
  • 17/09-23/09 2012
  • 10/09-16/09 2012
  • 03/09-09/09 2012
  • 27/08-02/09 2012
  • 20/08-26/08 2012
  • 13/08-19/08 2012
  • 06/08-12/08 2012
  • 30/07-05/08 2012
  • 23/07-29/07 2012
  • 16/07-22/07 2012
  • 09/07-15/07 2012
  • 02/07-08/07 2012
  • 25/06-01/07 2012
  • 18/06-24/06 2012
  • 11/06-17/06 2012
  • 04/06-10/06 2012
  • 28/05-03/06 2012
  • 21/05-27/05 2012
  • 30/04-06/05 2012
  • 23/04-29/04 2012
  • 16/04-22/04 2012
  • 09/04-15/04 2012
  • 02/04-08/04 2012
  • 26/03-01/04 2012
  • 12/03-18/03 2012
  • 05/03-11/03 2012
  • 27/02-04/03 2012
  • 20/02-26/02 2012
  • 13/02-19/02 2012
  • 06/02-12/02 2012
  • 30/01-05/02 2012
  • 23/01-29/01 2012
  • 16/01-22/01 2012
  • 09/01-15/01 2012
  • 02/01-08/01 2012
  • 26/12-01/01 2012
  • 12/12-18/12 2011
  • 05/12-11/12 2011
  • 28/11-04/12 2011
  • 14/11-20/11 2011
  • 07/11-13/11 2011
  • 31/10-06/11 2011
  • 24/10-30/10 2011
  • 10/10-16/10 2011
  • 12/09-18/09 2011
  • 05/09-11/09 2011
  • 29/08-04/09 2011
  • 15/08-21/08 2011
  • 04/07-10/07 2011
  • 27/06-03/07 2011
  • 20/06-26/06 2011
  • 13/06-19/06 2011
  • 06/06-12/06 2011
  • 30/05-05/06 2011
  • 16/05-22/05 2011
  • 28/03-03/04 2011
  • 14/02-20/02 2011
  • 24/01-30/01 2011
  • 17/01-23/01 2011
  • 10/01-16/01 2011
  • 03/01-09/01 2011
  • 20/12-26/12 2010
  • 13/12-19/12 2010
  • 06/12-12/12 2010
  • 20/09-26/09 2010
  • 06/09-12/09 2010
  • 23/08-29/08 2010
  • 19/07-25/07 2010
  • 12/07-18/07 2010
  • 05/07-11/07 2010
  • 28/06-04/07 2010
  • 21/06-27/06 2010
  • 14/06-20/06 2010
  • 10/05-16/05 2010
  • 05/04-11/04 2010
  • 29/03-04/04 2010
  • 15/03-21/03 2010
  • 08/03-14/03 2010
  • 15/02-21/02 2010
  • 08/02-14/02 2010
  • 09/11-15/11 2009
  • 02/11-08/11 2009
  • 26/10-01/11 2009
  • 19/10-25/10 2009
  • 05/10-11/10 2009
  • 28/09-04/10 2009
  • 21/09-27/09 2009
  • 07/09-13/09 2009
  • 31/08-06/09 2009
  • 27/07-02/08 2009
  • 20/07-26/07 2009
  • 13/07-19/07 2009
  • 06/07-12/07 2009
  • 29/06-05/07 2009
  • 22/06-28/06 2009
  • 15/06-21/06 2009
  • 01/06-07/06 2009
  • 25/05-31/05 2009
  • 18/05-24/05 2009
  • 11/05-17/05 2009
  • 27/04-03/05 2009

    E-mail mij

    Druk op onderstaande knop om mij te e-mailen.


    Blog als favoriet !

    Zoeken met Google




    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Bloggen.be, eenvoudig, gratis en snel jouw eigen blog!