Inhoud blog
  • JAAR VAN DE HAAN 16-12
  • JAAR VAN DE HAAN 15-12
  • JAAR VAN DE HAAN 14-12
  • JAAR VAN DE HAAN 13-12
  • JAAR VAN DE HAAN 12-12
    Zoeken in blog

    Foto
    Noli turbare circulos meos (Archimedes)


    GNOMON
    Wiskunde zie je!
    10-07-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Binaire puzzels op vakantie

    Deze zomer neem ik alvast een boekje van Denksport mee met binaire puzzels. Echt verslavend!

    De bovenstaande binaire puzzel bevat 8 x 8 vakjes. 
    Deze zijn al gedeeltelijk ingevuld en moeten geheel ingevuld worden.


    Hoe los je een binaire puzzel op?

    Hiervoor gelden de volgende regels:

    (1) vul alleen een 0 of een 1 in

    (2) er mogen maximaal 2 nullen of enen naast elkaar staan

    (3) elke rij en kolom bestaat uit evenveel nullen als enen

    (4) elke rij of kolom is uniek (geen twee rijen of kolommen zijn exact gelijk) .

    Elke puzzel heeft precies één oplossing, die met logisch denken gevonden kan worden.
     
    Je kunt binaire puzzels online invullen op http://binaire-puzzels.robinu.nl/ .

    ******************************************************************************************************

    Ik kwam bijna 50 jaar geleden voor het eerst in contact met de binaire getallen
    toen onze meester van het zesde leerjaar ons uitlegde hoe de oude Egyptenaren twee getallen met elkaar vermenigvuldigden.
    Hieronder zie je hoe ze 25 x 31 met een eenvoudig rekenschema oplosten.
    Voor wie wil weten wat het verband is met de binaire schrijfwijze van getallen: lees de bijlage. 

    In bijlage zitten ook binaire goochelkaartjes en een ppt-presentatie over 'binair goochelen'.

    Geniet ervan (en zeker ook van de vakantie)!

    animated sexy girl in the water


    Bijlagen:
    Binair truukje.ppt (1.8 MB)   
    Binair vermenigvuldigen zoals de Oude Egyptenaren.pdf (183.3 KB)   
    Binaire goochelkaartjes.pdf (78.5 KB)   

    10-07-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De paradox van het oneindige

    Glitter-infinity-love-favim.com-372251_large

    Heel wat wiskundige paradoxen hebben te maken met het begrip 'oneindig'.

    Volgens de paradox van Zeno kan de loper Achilles een schildpad
    die enkele meters voor hem uit loopt nooit inhalen.
    Kijk maar even mee naar het volgende filmpje.




    En als je wilt bewijzen dat 1 = 2, dan kan dit als volgt.

    1 + ∞ = ∞ en 2 + ∞ = ∞
    dus
    1 + ∞ = 2 + ∞.
    Trek nu van beide leden  ∞ af, dan is 1 = 2.

    10-07-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Torus en de regels van Guldin

     

    Een torus is een driedimensionaal omwentelingslichaam
    dat ontstaat door een cirkel te laten wentelen rond een rechte
    die zich in het vlak van de cirkel bevindt
    en waarbij de cirkel deze rechte niet snijdt.

    Een (opgepompte) binnenband van een fiets
    en een donut hebben de vorm van een torus.

    Het is een klassieke oefening van integraalrekenen
    om de oppervlakte A en het volume V van een torus te berekenen.

    Spijtig genoeg vinden we in de huidige wiskundehandboeken geen bewijs meer
    van de regels van Guldin, die toelaten de oppervlakte en het volume van een torus
    op een eenvoudige manier te berekenen.

    Regels van Guldin

    De eerste regel van Guldin, vernoemd naar de Zwitserse wiskundige en astronoom Paul Guldin (1577-1643),
    stelt dat de oppervlakte van een omwentelingslichaam
    gelijk is aan de omtrek van de om te wentelen figuur maal de lengte van de cirkel die het zwaartepunt van deze figuur aflegt.

    De regel kwam al eerder voor in de Synagoge van Pappos van Alexandrië (4e eeuw)
    en wordt daarom ook wel regel van Pappus genoemd.

    De oppervlakte van een torus met omwentelingsstraal van het middelpunt R en straal van de om te wentelen cirkel r is dus

    A = 2 pi r cdot 2 pi R = 4 pi^2 r R.

    De tweede regel van Guldin stelt dat de inhoud van een omwentelingslichaam
    gelijk is aan de oppervlakte van de om te wentelen figuur maal de lengte van de cirkel die het zwaartepunt van deze figuur aflegt.

    De inhoud van de zojuist beschreven torus kan dus worden gevonden met

    V = pi r^2 cdot 2 pi R = 2 pi^2 r^2 R.

     

    Doordenkertje: men kan een torus ook bekijken als het ruimtelijk lichaam
    dat men bekomt door de twee uiteinden van een cilinder samen te voegen.
    Bereken dan eens de oppervlakte en de inhoud van deze 'genererende' cilinder.
    Ze blijken exact dezelfde waarde te hebben als bij de torus die eruit ontstaat!



    10-07-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    09-07-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.De cardioïde deel 2

    Zoals ik op een andere pagina op mijn blog al liet weten is de cardioïde of hartlijn mijn favoriete vlakke meetkundige kromme.

    Op http://users.telenet.be/jci/limacon/cardioide.html
    vind je een uitgebreide studie van de cardioïde.

    Hieronder vind je twee verrassende manieren om een hartlijn te voorschijn te 'toveren'.

    WERKWIJZE 1

    Teken een cirkel en verdeel de omtrek in een aantal even lange bogen.
    Op de onderstaande tekening zijn dat 30 bogen.
    Nummer de verdeelpunten van 0 tot en met 29.
    Verbind nu punt 0 met punt 15, punt 2 met punt 16, punt 3 met punt 17 .. enzovoort.

    De omhullende van die verzameling koorden is dan een cardioïde.



    WERKWIJZE 2

    Vertrek van een vaste cirkel met middelpunt A (rood) en neem daarop een punt P.

    Neem een vast punt C buiten de cirkel.
    Teken nu de cirkel met middelpunt P die door het vast punt C gaat.


     Als P de gegeven cirkel doorloopt, dan is de omhullende kromme

    van die verzameling cirkels precies een cardioïde.




     

    09-07-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)


    Archief per week
  • 11/12-17/12 2017
  • 04/12-10/12 2017
  • 27/11-03/12 2017
  • 20/11-26/11 2017
  • 13/11-19/11 2017
  • 06/11-12/11 2017
  • 30/10-05/11 2017
  • 23/10-29/10 2017
  • 16/10-22/10 2017
  • 09/10-15/10 2017
  • 02/10-08/10 2017
  • 25/09-01/10 2017
  • 18/09-24/09 2017
  • 11/09-17/09 2017
  • 04/09-10/09 2017
  • 28/08-03/09 2017
  • 21/08-27/08 2017
  • 14/08-20/08 2017
  • 07/08-13/08 2017
  • 31/07-06/08 2017
  • 24/07-30/07 2017
  • 17/07-23/07 2017
  • 10/07-16/07 2017
  • 03/07-09/07 2017
  • 26/06-02/07 2017
  • 19/06-25/06 2017
  • 12/06-18/06 2017
  • 05/06-11/06 2017
  • 29/05-04/06 2017
  • 22/05-28/05 2017
  • 15/05-21/05 2017
  • 08/05-14/05 2017
  • 01/05-07/05 2017
  • 24/04-30/04 2017
  • 17/04-23/04 2017
  • 10/04-16/04 2017
  • 03/04-09/04 2017
  • 27/03-02/04 2017
  • 20/03-26/03 2017
  • 13/03-19/03 2017
  • 06/03-12/03 2017
  • 27/02-05/03 2017
  • 20/02-26/02 2017
  • 13/02-19/02 2017
  • 06/02-12/02 2017
  • 30/01-05/02 2017
  • 23/01-29/01 2017
  • 16/01-22/01 2017
  • 09/01-15/01 2017
  • 02/01-08/01 2017
  • 25/12-31/12 2017
  • 19/12-25/12 2016
  • 12/12-18/12 2016
  • 05/12-11/12 2016
  • 28/11-04/12 2016
  • 21/11-27/11 2016
  • 14/11-20/11 2016
  • 07/11-13/11 2016
  • 31/10-06/11 2016
  • 24/10-30/10 2016
  • 17/10-23/10 2016
  • 10/10-16/10 2016
  • 03/10-09/10 2016
  • 26/09-02/10 2016
  • 19/09-25/09 2016
  • 12/09-18/09 2016
  • 05/09-11/09 2016
  • 29/08-04/09 2016
  • 22/08-28/08 2016
  • 15/08-21/08 2016
  • 08/08-14/08 2016
  • 01/08-07/08 2016
  • 25/07-31/07 2016
  • 18/07-24/07 2016
  • 11/07-17/07 2016
  • 04/07-10/07 2016
  • 27/06-03/07 2016
  • 20/06-26/06 2016
  • 13/06-19/06 2016
  • 06/06-12/06 2016
  • 30/05-05/06 2016
  • 23/05-29/05 2016
  • 16/05-22/05 2016
  • 09/05-15/05 2016
  • 02/05-08/05 2016
  • 25/04-01/05 2016
  • 18/04-24/04 2016
  • 11/04-17/04 2016
  • 04/04-10/04 2016
  • 28/03-03/04 2016
  • 21/03-27/03 2016
  • 14/03-20/03 2016
  • 07/03-13/03 2016
  • 29/02-06/03 2016
  • 22/02-28/02 2016
  • 15/02-21/02 2016
  • 08/02-14/02 2016
  • 01/02-07/02 2016
  • 25/01-31/01 2016
  • 18/01-24/01 2016
  • 11/01-17/01 2016
  • 04/01-10/01 2016
  • 28/12-03/01 2021
  • 21/12-27/12 2015
  • 14/12-20/12 2015
  • 07/12-13/12 2015
  • 30/11-06/12 2015
  • 23/11-29/11 2015
  • 16/11-22/11 2015
  • 09/11-15/11 2015
  • 02/11-08/11 2015
  • 26/10-01/11 2015
  • 19/10-25/10 2015
  • 12/10-18/10 2015
  • 05/10-11/10 2015
  • 28/09-04/10 2015
  • 21/09-27/09 2015
  • 14/09-20/09 2015
  • 07/09-13/09 2015
  • 31/08-06/09 2015
  • 24/08-30/08 2015
  • 17/08-23/08 2015
  • 10/08-16/08 2015
  • 03/08-09/08 2015
  • 27/07-02/08 2015
  • 20/07-26/07 2015
  • 13/07-19/07 2015
  • 06/07-12/07 2015
  • 29/06-05/07 2015
  • 22/06-28/06 2015
  • 15/06-21/06 2015
  • 08/06-14/06 2015
  • 01/06-07/06 2015
  • 25/05-31/05 2015
  • 18/05-24/05 2015
  • 11/05-17/05 2015
  • 04/05-10/05 2015
  • 27/04-03/05 2015
  • 20/04-26/04 2015
  • 13/04-19/04 2015
  • 06/04-12/04 2015
  • 30/03-05/04 2015
  • 23/03-29/03 2015
  • 16/03-22/03 2015
  • 09/03-15/03 2015
  • 02/03-08/03 2015
  • 23/02-01/03 2015
  • 16/02-22/02 2015
  • 09/02-15/02 2015
  • 02/02-08/02 2015
  • 26/01-01/02 2015
  • 19/01-25/01 2015
  • 12/01-18/01 2015
  • 05/01-11/01 2015
  • 29/12-04/01 2015
  • 22/12-28/12 2014
  • 15/12-21/12 2014
  • 08/12-14/12 2014
  • 01/12-07/12 2014
  • 24/11-30/11 2014
  • 17/11-23/11 2014
  • 10/11-16/11 2014
  • 03/11-09/11 2014
  • 27/10-02/11 2014
  • 20/10-26/10 2014
  • 13/10-19/10 2014
  • 06/10-12/10 2014
  • 29/09-05/10 2014
  • 22/09-28/09 2014
  • 15/09-21/09 2014
  • 08/09-14/09 2014
  • 01/09-07/09 2014
  • 25/08-31/08 2014
  • 18/08-24/08 2014
  • 04/08-10/08 2014
  • 21/07-27/07 2014
  • 07/07-13/07 2014
  • 30/06-06/07 2014
  • 16/06-22/06 2014
  • 09/06-15/06 2014
  • 28/04-04/05 2014
  • 21/04-27/04 2014
  • 14/04-20/04 2014
  • 07/04-13/04 2014
  • 31/03-06/04 2014
  • 24/03-30/03 2014
  • 17/03-23/03 2014
  • 10/03-16/03 2014
  • 03/03-09/03 2014
  • 24/02-02/03 2014
  • 17/02-23/02 2014
  • 10/02-16/02 2014
  • 03/02-09/02 2014
  • 27/01-02/02 2014
  • 20/01-26/01 2014
  • 13/01-19/01 2014
  • 06/01-12/01 2014
  • 30/12-05/01 2014
  • 23/12-29/12 2013
  • 16/12-22/12 2013
  • 09/12-15/12 2013
  • 02/12-08/12 2013
  • 25/11-01/12 2013
  • 18/11-24/11 2013
  • 11/11-17/11 2013
  • 04/11-10/11 2013
  • 28/10-03/11 2013
  • 21/10-27/10 2013
  • 14/10-20/10 2013
  • 07/10-13/10 2013
  • 30/09-06/10 2013
  • 23/09-29/09 2013
  • 16/09-22/09 2013
  • 09/09-15/09 2013
  • 02/09-08/09 2013
  • 26/08-01/09 2013
  • 19/08-25/08 2013
  • 12/08-18/08 2013
  • 05/08-11/08 2013
  • 29/07-04/08 2013
  • 22/07-28/07 2013
  • 15/07-21/07 2013
  • 08/07-14/07 2013
  • 01/07-07/07 2013
  • 24/06-30/06 2013
  • 17/06-23/06 2013
  • 10/06-16/06 2013
  • 03/06-09/06 2013
  • 27/05-02/06 2013
  • 20/05-26/05 2013
  • 13/05-19/05 2013
  • 06/05-12/05 2013
  • 29/04-05/05 2013
  • 22/04-28/04 2013
  • 15/04-21/04 2013
  • 08/04-14/04 2013
  • 01/04-07/04 2013
  • 25/03-31/03 2013
  • 18/03-24/03 2013
  • 11/03-17/03 2013
  • 04/03-10/03 2013
  • 25/02-03/03 2013
  • 18/02-24/02 2013
  • 11/02-17/02 2013
  • 04/02-10/02 2013
  • 28/01-03/02 2013
  • 21/01-27/01 2013
  • 07/01-13/01 2013
  • 31/12-06/01 2013
  • 24/12-30/12 2012
  • 17/12-23/12 2012
  • 10/12-16/12 2012
  • 03/12-09/12 2012
  • 26/11-02/12 2012
  • 19/11-25/11 2012
  • 12/11-18/11 2012
  • 05/11-11/11 2012
  • 29/10-04/11 2012
  • 22/10-28/10 2012
  • 15/10-21/10 2012
  • 08/10-14/10 2012
  • 01/10-07/10 2012
  • 24/09-30/09 2012
  • 17/09-23/09 2012
  • 10/09-16/09 2012
  • 03/09-09/09 2012
  • 27/08-02/09 2012
  • 20/08-26/08 2012
  • 13/08-19/08 2012
  • 06/08-12/08 2012
  • 30/07-05/08 2012
  • 23/07-29/07 2012
  • 16/07-22/07 2012
  • 09/07-15/07 2012
  • 02/07-08/07 2012
  • 25/06-01/07 2012
  • 18/06-24/06 2012
  • 11/06-17/06 2012
  • 04/06-10/06 2012
  • 28/05-03/06 2012
  • 21/05-27/05 2012
  • 30/04-06/05 2012
  • 23/04-29/04 2012
  • 16/04-22/04 2012
  • 09/04-15/04 2012
  • 02/04-08/04 2012
  • 26/03-01/04 2012
  • 12/03-18/03 2012
  • 05/03-11/03 2012
  • 27/02-04/03 2012
  • 20/02-26/02 2012
  • 13/02-19/02 2012
  • 06/02-12/02 2012
  • 30/01-05/02 2012
  • 23/01-29/01 2012
  • 16/01-22/01 2012
  • 09/01-15/01 2012
  • 02/01-08/01 2012
  • 26/12-01/01 2012
  • 12/12-18/12 2011
  • 05/12-11/12 2011
  • 28/11-04/12 2011
  • 14/11-20/11 2011
  • 07/11-13/11 2011
  • 31/10-06/11 2011
  • 24/10-30/10 2011
  • 10/10-16/10 2011
  • 12/09-18/09 2011
  • 05/09-11/09 2011
  • 29/08-04/09 2011
  • 15/08-21/08 2011
  • 04/07-10/07 2011
  • 27/06-03/07 2011
  • 20/06-26/06 2011
  • 13/06-19/06 2011
  • 06/06-12/06 2011
  • 30/05-05/06 2011
  • 16/05-22/05 2011
  • 28/03-03/04 2011
  • 14/02-20/02 2011
  • 24/01-30/01 2011
  • 17/01-23/01 2011
  • 10/01-16/01 2011
  • 03/01-09/01 2011
  • 20/12-26/12 2010
  • 13/12-19/12 2010
  • 06/12-12/12 2010
  • 20/09-26/09 2010
  • 06/09-12/09 2010
  • 23/08-29/08 2010
  • 19/07-25/07 2010
  • 12/07-18/07 2010
  • 05/07-11/07 2010
  • 28/06-04/07 2010
  • 21/06-27/06 2010
  • 14/06-20/06 2010
  • 10/05-16/05 2010
  • 05/04-11/04 2010
  • 29/03-04/04 2010
  • 15/03-21/03 2010
  • 08/03-14/03 2010
  • 15/02-21/02 2010
  • 08/02-14/02 2010
  • 09/11-15/11 2009
  • 02/11-08/11 2009
  • 26/10-01/11 2009
  • 19/10-25/10 2009
  • 05/10-11/10 2009
  • 28/09-04/10 2009
  • 21/09-27/09 2009
  • 07/09-13/09 2009
  • 31/08-06/09 2009
  • 27/07-02/08 2009
  • 20/07-26/07 2009
  • 13/07-19/07 2009
  • 06/07-12/07 2009
  • 29/06-05/07 2009
  • 22/06-28/06 2009
  • 15/06-21/06 2009
  • 01/06-07/06 2009
  • 25/05-31/05 2009
  • 18/05-24/05 2009
  • 11/05-17/05 2009
  • 27/04-03/05 2009

    E-mail mij

    Druk op onderstaande knop om mij te e-mailen.


    Blog als favoriet !

    Zoeken met Google




    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Bloggen.be, eenvoudig, gratis en snel jouw eigen blog!