Inhoud blog
  • JAAR VAN DE HAAN 16-12
  • JAAR VAN DE HAAN 15-12
  • JAAR VAN DE HAAN 14-12
  • JAAR VAN DE HAAN 13-12
  • JAAR VAN DE HAAN 12-12
    Zoeken in blog

    Foto
    Noli turbare circulos meos (Archimedes)


    GNOMON
    Wiskunde zie je!
    20-01-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Griekse constructie van een vierkant

    De Griekse krijgers stonden bekend om hun heldhaftigheid.

    De Griekse wiskundigen daarentegen waren erg bedreven in het uitvoeren van meetkundige constructies
    waarbij ze enkel gebruik maakten van een passer en een liniaal.

    Hieronder leggen we - bij wijze van voorbeeld - deze 'Griekse werkwijze' uit voor de constructie van een vierkant.


     



    1. Teken eerst een willekeurige cirkel c met middelpunt A.
    2. Teken een willekeurige middellijn BC.
    3. Teken een cirkel c1 met middelpunt B en een straal die groter is dan de straal van de cirkel c.
        Teken een cirkel c2 met middelpunt C en een even grote straal als de cirkel c1.
    4. Bepaal de snijpunten D en E van de cirkels c1 en c2.
    5. Teken de rechte DE en bepaal de snijpunten F en G van DE met de cirkel c.
    6. Teken het vierkant BFCG.

            Wist je dat de Italiaanse wiskundige Lorenzo Mascheroni (1750-1800) in 1797 aantoonde dat alle constructies
    ie men met behulp van een passer en een liniaal kan uitvoeren ook kunnen uitgevoerd worden door enkel een passer te gebruiken.

    Meer hierover lees je o.a. op http://www.cut-the-knot.org/do_you_know/compass.shtml .

    20-01-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    19-01-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Een Griekse tragedie en de regelmatige vijfhoek


    In de Belgische filmgeschiedenis staat 1987 in het vet gedrukt.
    In dat jaar won de korte animatiefilm Een Griekse tragedie van de inmiddels overleden Nicole Van Goethem een Oscar,.
    En tot op vandaag is dat ook de enige!

    In de film spelen de Kariatiden (vrouwelijke beelden die als steunpilaren dienden in het Erechteion op de Atheense Akropolis) de hoofdrol.
    In het begin van de film verschijnt de Latijnse spreuk Quod non fecerunt Scoti, fecerunt Cariatidi
    (wat de Schotten niet hebben gedaan, hebben de Kariatiden gedaan).
    Hiermee wordt allusie gemaakt op de uitspraak Quod non fecerunt Gothi, fecerunt Scoti
     
    (wat de  vandalen niet hebben gedaan, hebben de Schotten gedaan) van de Engelse dichter Byron.
    Hij deed die uitspraak naar aanleiding van het feit dat de Schotse kunstverzamelaar Lord Elgin
    tussen 1801 en 1804 marmeren sculpturen en ook één van de Kariatiden  vanop de Akropolis meenam naar Engeland.
    Een Griekse tragedie!

    Hieronder kan je meegenieten van dit Oscarwinnend animatiefilmpje.

    .

     

    Wanneer ik aan het werk ben met het computerprogramma GeoGebra, vraag ik me soms af
    of het niet-functioneel gebruik hiervan ook niet kan leiden tot 'een nieuwe Griekse tragedie'.
    Eén van de grote uitdagingen van de Griekse wiskunde was immers het correct construeren
    van meetkundige figuren met behulp van passer en liniaal.
    Zo heb ik me altijd verbaasd over de geniale 'Griekse  constructie’ van een regelmatige vijfhoek.
    Met het programma GeoGebra gebeurt dit nu bij wijze van spreken 'door een simpele druk op een knop'.

    Hieronder kan je zien hoe men met behulp van passer en liniaal

    een regelmatige vijfhoek construeert in een gegeven cirkel met middelpunt O en straal r = |ON|. 



    We gaan ervan uit dat je weet hoe je in die cirkel twee loodrechte middellijnen construeert.
    Hoe je dit doet zie je bijvoorbeeld op de vorige bijdrage op dit wiskundeblog (constructie van een vierkant met passer en liniaal).

    M is het midden van [ON] en F bekom je door A vanuit M om te cirkelen tot op ON.

    |AF| is dan precies de lengte z5 van de regelmatige vijfhoek ingeschreven in de gegeven cirkel.
    Merk op: bij de constructie van de vijfhoek bekom je de hoekpunten H, I, J en K
    door de afstand van A tot F (dit is de zijde van de vijfhoek) telkens met de passer af te passen.

    Waarom deze constructie klopt lees je in de bijlage.

    Purple pentagon in a circle - magic protection symbol large 

    Bijlagen:
    Berekening van de lengte van de zijden van een regelmatige vijfhoek.pdf (299.1 KB)   

    19-01-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    18-01-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Regelmatige zeshoek en zevenhoek
    Wellicht is de constructie van een regelmatige zeshoek met behulp van passer en liniaal één van de best gekende en eenvoudigste.
    Hieronder kan je die constructie nog eens bekijken.
     
    Wist je dat de regelmatige zevenhoek niet nauwkeurig met passer en liniaal kan geconstrueerd worden?
    Wiskundigen zijn er wel in geslaagd constructies te vinden die erg goede benaderingen zijn.

    In de bijlage kan je lezen hoe je de constructie van een regelmatige zevenhoek erg nauwkeurig kunt benaderen.



    Bijlagen:
    Benaderingsmethode constructie regelmatige zevenhoek.pdf (113.7 KB)   

    18-01-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    17-01-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.Wiskundespreuken en Bond Zonder Naam


    Op 17 januari 2012 overleed Phil Bosmans.
    Hij stuurde honderden inspirerende spreuken de wereld in
    met de vaste bedoeling de wereld te verbeteren
    (door te beginnen bij onszelf). 

    Hierboven zie je twee van mijn lievelingsspreuken
    en hieronder staat een collectie spreuken
    die op een of andere manier naar het onderwijs verwijzen.

    Deze selectie van spreuken vind je afdrukklaar in bijlage.

    Met dank aan Phil Bosmans
    en Bond Zonder Naam
    www.bzn.be

    Bijlagen:
    Spreuken Bonder Zonder Naam.pdf (180.3 KB)   

    17-01-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)
    16-01-2012
    Klik hier om een link te hebben waarmee u dit artikel later terug kunt lezen.WISKUNDE QUIZ

    Wie op zoek is naar een wiskundesite met een schat aan oefeningen komt ongetwijfeld aan zijn trekken op

    http://www.thatquiz.org/ (met dank aan collega Björn Carreyn die me hierop attent maakte).

    Je vindt er opgaven over gehele getallen (integers) en analyse, breuken (fractions),

    diverse wiskundige begrippen (concepts) zoals tijd, geld, grafieken, verzamelingen ... en meetkunde.



    Ga naar de website of klik hieronder een rubriek aan en je kunt al eens proberen 10 opgaven op te lossen.

    computer come in animated gif       computer come in animated gif       computer come in animated gif      computer come in animated gif      computer come in animated gif      computer come in animated gif 


    bar with snake crawling along animated gif
        



                                                        
      

    16-01-2012 om 00:00 geschreven door Luc Gheysens  


    >> Reageer (0)


    Archief per week
  • 11/12-17/12 2017
  • 04/12-10/12 2017
  • 27/11-03/12 2017
  • 20/11-26/11 2017
  • 13/11-19/11 2017
  • 06/11-12/11 2017
  • 30/10-05/11 2017
  • 23/10-29/10 2017
  • 16/10-22/10 2017
  • 09/10-15/10 2017
  • 02/10-08/10 2017
  • 25/09-01/10 2017
  • 18/09-24/09 2017
  • 11/09-17/09 2017
  • 04/09-10/09 2017
  • 28/08-03/09 2017
  • 21/08-27/08 2017
  • 14/08-20/08 2017
  • 07/08-13/08 2017
  • 31/07-06/08 2017
  • 24/07-30/07 2017
  • 17/07-23/07 2017
  • 10/07-16/07 2017
  • 03/07-09/07 2017
  • 26/06-02/07 2017
  • 19/06-25/06 2017
  • 12/06-18/06 2017
  • 05/06-11/06 2017
  • 29/05-04/06 2017
  • 22/05-28/05 2017
  • 15/05-21/05 2017
  • 08/05-14/05 2017
  • 01/05-07/05 2017
  • 24/04-30/04 2017
  • 17/04-23/04 2017
  • 10/04-16/04 2017
  • 03/04-09/04 2017
  • 27/03-02/04 2017
  • 20/03-26/03 2017
  • 13/03-19/03 2017
  • 06/03-12/03 2017
  • 27/02-05/03 2017
  • 20/02-26/02 2017
  • 13/02-19/02 2017
  • 06/02-12/02 2017
  • 30/01-05/02 2017
  • 23/01-29/01 2017
  • 16/01-22/01 2017
  • 09/01-15/01 2017
  • 02/01-08/01 2017
  • 25/12-31/12 2017
  • 19/12-25/12 2016
  • 12/12-18/12 2016
  • 05/12-11/12 2016
  • 28/11-04/12 2016
  • 21/11-27/11 2016
  • 14/11-20/11 2016
  • 07/11-13/11 2016
  • 31/10-06/11 2016
  • 24/10-30/10 2016
  • 17/10-23/10 2016
  • 10/10-16/10 2016
  • 03/10-09/10 2016
  • 26/09-02/10 2016
  • 19/09-25/09 2016
  • 12/09-18/09 2016
  • 05/09-11/09 2016
  • 29/08-04/09 2016
  • 22/08-28/08 2016
  • 15/08-21/08 2016
  • 08/08-14/08 2016
  • 01/08-07/08 2016
  • 25/07-31/07 2016
  • 18/07-24/07 2016
  • 11/07-17/07 2016
  • 04/07-10/07 2016
  • 27/06-03/07 2016
  • 20/06-26/06 2016
  • 13/06-19/06 2016
  • 06/06-12/06 2016
  • 30/05-05/06 2016
  • 23/05-29/05 2016
  • 16/05-22/05 2016
  • 09/05-15/05 2016
  • 02/05-08/05 2016
  • 25/04-01/05 2016
  • 18/04-24/04 2016
  • 11/04-17/04 2016
  • 04/04-10/04 2016
  • 28/03-03/04 2016
  • 21/03-27/03 2016
  • 14/03-20/03 2016
  • 07/03-13/03 2016
  • 29/02-06/03 2016
  • 22/02-28/02 2016
  • 15/02-21/02 2016
  • 08/02-14/02 2016
  • 01/02-07/02 2016
  • 25/01-31/01 2016
  • 18/01-24/01 2016
  • 11/01-17/01 2016
  • 04/01-10/01 2016
  • 28/12-03/01 2021
  • 21/12-27/12 2015
  • 14/12-20/12 2015
  • 07/12-13/12 2015
  • 30/11-06/12 2015
  • 23/11-29/11 2015
  • 16/11-22/11 2015
  • 09/11-15/11 2015
  • 02/11-08/11 2015
  • 26/10-01/11 2015
  • 19/10-25/10 2015
  • 12/10-18/10 2015
  • 05/10-11/10 2015
  • 28/09-04/10 2015
  • 21/09-27/09 2015
  • 14/09-20/09 2015
  • 07/09-13/09 2015
  • 31/08-06/09 2015
  • 24/08-30/08 2015
  • 17/08-23/08 2015
  • 10/08-16/08 2015
  • 03/08-09/08 2015
  • 27/07-02/08 2015
  • 20/07-26/07 2015
  • 13/07-19/07 2015
  • 06/07-12/07 2015
  • 29/06-05/07 2015
  • 22/06-28/06 2015
  • 15/06-21/06 2015
  • 08/06-14/06 2015
  • 01/06-07/06 2015
  • 25/05-31/05 2015
  • 18/05-24/05 2015
  • 11/05-17/05 2015
  • 04/05-10/05 2015
  • 27/04-03/05 2015
  • 20/04-26/04 2015
  • 13/04-19/04 2015
  • 06/04-12/04 2015
  • 30/03-05/04 2015
  • 23/03-29/03 2015
  • 16/03-22/03 2015
  • 09/03-15/03 2015
  • 02/03-08/03 2015
  • 23/02-01/03 2015
  • 16/02-22/02 2015
  • 09/02-15/02 2015
  • 02/02-08/02 2015
  • 26/01-01/02 2015
  • 19/01-25/01 2015
  • 12/01-18/01 2015
  • 05/01-11/01 2015
  • 29/12-04/01 2015
  • 22/12-28/12 2014
  • 15/12-21/12 2014
  • 08/12-14/12 2014
  • 01/12-07/12 2014
  • 24/11-30/11 2014
  • 17/11-23/11 2014
  • 10/11-16/11 2014
  • 03/11-09/11 2014
  • 27/10-02/11 2014
  • 20/10-26/10 2014
  • 13/10-19/10 2014
  • 06/10-12/10 2014
  • 29/09-05/10 2014
  • 22/09-28/09 2014
  • 15/09-21/09 2014
  • 08/09-14/09 2014
  • 01/09-07/09 2014
  • 25/08-31/08 2014
  • 18/08-24/08 2014
  • 04/08-10/08 2014
  • 21/07-27/07 2014
  • 07/07-13/07 2014
  • 30/06-06/07 2014
  • 16/06-22/06 2014
  • 09/06-15/06 2014
  • 28/04-04/05 2014
  • 21/04-27/04 2014
  • 14/04-20/04 2014
  • 07/04-13/04 2014
  • 31/03-06/04 2014
  • 24/03-30/03 2014
  • 17/03-23/03 2014
  • 10/03-16/03 2014
  • 03/03-09/03 2014
  • 24/02-02/03 2014
  • 17/02-23/02 2014
  • 10/02-16/02 2014
  • 03/02-09/02 2014
  • 27/01-02/02 2014
  • 20/01-26/01 2014
  • 13/01-19/01 2014
  • 06/01-12/01 2014
  • 30/12-05/01 2014
  • 23/12-29/12 2013
  • 16/12-22/12 2013
  • 09/12-15/12 2013
  • 02/12-08/12 2013
  • 25/11-01/12 2013
  • 18/11-24/11 2013
  • 11/11-17/11 2013
  • 04/11-10/11 2013
  • 28/10-03/11 2013
  • 21/10-27/10 2013
  • 14/10-20/10 2013
  • 07/10-13/10 2013
  • 30/09-06/10 2013
  • 23/09-29/09 2013
  • 16/09-22/09 2013
  • 09/09-15/09 2013
  • 02/09-08/09 2013
  • 26/08-01/09 2013
  • 19/08-25/08 2013
  • 12/08-18/08 2013
  • 05/08-11/08 2013
  • 29/07-04/08 2013
  • 22/07-28/07 2013
  • 15/07-21/07 2013
  • 08/07-14/07 2013
  • 01/07-07/07 2013
  • 24/06-30/06 2013
  • 17/06-23/06 2013
  • 10/06-16/06 2013
  • 03/06-09/06 2013
  • 27/05-02/06 2013
  • 20/05-26/05 2013
  • 13/05-19/05 2013
  • 06/05-12/05 2013
  • 29/04-05/05 2013
  • 22/04-28/04 2013
  • 15/04-21/04 2013
  • 08/04-14/04 2013
  • 01/04-07/04 2013
  • 25/03-31/03 2013
  • 18/03-24/03 2013
  • 11/03-17/03 2013
  • 04/03-10/03 2013
  • 25/02-03/03 2013
  • 18/02-24/02 2013
  • 11/02-17/02 2013
  • 04/02-10/02 2013
  • 28/01-03/02 2013
  • 21/01-27/01 2013
  • 07/01-13/01 2013
  • 31/12-06/01 2013
  • 24/12-30/12 2012
  • 17/12-23/12 2012
  • 10/12-16/12 2012
  • 03/12-09/12 2012
  • 26/11-02/12 2012
  • 19/11-25/11 2012
  • 12/11-18/11 2012
  • 05/11-11/11 2012
  • 29/10-04/11 2012
  • 22/10-28/10 2012
  • 15/10-21/10 2012
  • 08/10-14/10 2012
  • 01/10-07/10 2012
  • 24/09-30/09 2012
  • 17/09-23/09 2012
  • 10/09-16/09 2012
  • 03/09-09/09 2012
  • 27/08-02/09 2012
  • 20/08-26/08 2012
  • 13/08-19/08 2012
  • 06/08-12/08 2012
  • 30/07-05/08 2012
  • 23/07-29/07 2012
  • 16/07-22/07 2012
  • 09/07-15/07 2012
  • 02/07-08/07 2012
  • 25/06-01/07 2012
  • 18/06-24/06 2012
  • 11/06-17/06 2012
  • 04/06-10/06 2012
  • 28/05-03/06 2012
  • 21/05-27/05 2012
  • 30/04-06/05 2012
  • 23/04-29/04 2012
  • 16/04-22/04 2012
  • 09/04-15/04 2012
  • 02/04-08/04 2012
  • 26/03-01/04 2012
  • 12/03-18/03 2012
  • 05/03-11/03 2012
  • 27/02-04/03 2012
  • 20/02-26/02 2012
  • 13/02-19/02 2012
  • 06/02-12/02 2012
  • 30/01-05/02 2012
  • 23/01-29/01 2012
  • 16/01-22/01 2012
  • 09/01-15/01 2012
  • 02/01-08/01 2012
  • 26/12-01/01 2012
  • 12/12-18/12 2011
  • 05/12-11/12 2011
  • 28/11-04/12 2011
  • 14/11-20/11 2011
  • 07/11-13/11 2011
  • 31/10-06/11 2011
  • 24/10-30/10 2011
  • 10/10-16/10 2011
  • 12/09-18/09 2011
  • 05/09-11/09 2011
  • 29/08-04/09 2011
  • 15/08-21/08 2011
  • 04/07-10/07 2011
  • 27/06-03/07 2011
  • 20/06-26/06 2011
  • 13/06-19/06 2011
  • 06/06-12/06 2011
  • 30/05-05/06 2011
  • 16/05-22/05 2011
  • 28/03-03/04 2011
  • 14/02-20/02 2011
  • 24/01-30/01 2011
  • 17/01-23/01 2011
  • 10/01-16/01 2011
  • 03/01-09/01 2011
  • 20/12-26/12 2010
  • 13/12-19/12 2010
  • 06/12-12/12 2010
  • 20/09-26/09 2010
  • 06/09-12/09 2010
  • 23/08-29/08 2010
  • 19/07-25/07 2010
  • 12/07-18/07 2010
  • 05/07-11/07 2010
  • 28/06-04/07 2010
  • 21/06-27/06 2010
  • 14/06-20/06 2010
  • 10/05-16/05 2010
  • 05/04-11/04 2010
  • 29/03-04/04 2010
  • 15/03-21/03 2010
  • 08/03-14/03 2010
  • 15/02-21/02 2010
  • 08/02-14/02 2010
  • 09/11-15/11 2009
  • 02/11-08/11 2009
  • 26/10-01/11 2009
  • 19/10-25/10 2009
  • 05/10-11/10 2009
  • 28/09-04/10 2009
  • 21/09-27/09 2009
  • 07/09-13/09 2009
  • 31/08-06/09 2009
  • 27/07-02/08 2009
  • 20/07-26/07 2009
  • 13/07-19/07 2009
  • 06/07-12/07 2009
  • 29/06-05/07 2009
  • 22/06-28/06 2009
  • 15/06-21/06 2009
  • 01/06-07/06 2009
  • 25/05-31/05 2009
  • 18/05-24/05 2009
  • 11/05-17/05 2009
  • 27/04-03/05 2009

    E-mail mij

    Druk op onderstaande knop om mij te e-mailen.


    Blog als favoriet !

    Zoeken met Google




    Blog tegen de wet? Klik hier.
    Gratis blog op https://www.bloggen.be - Bloggen.be, eenvoudig, gratis en snel jouw eigen blog!